test_optimizer_grad.py 11.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np
from collections import defaultdict

import paddle.fluid as fluid
import paddle.fluid.optimizer as optimizer
from paddle.fluid.backward import _append_grad_suffix_

M
MRXLT 已提交
23
import paddle
24

M
MRXLT 已提交
25 26
paddle.enable_static()

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
np.random.seed(10)

SHAPE = [16, 10]


class SimpleNetWithCond(object):
    """
    Build net with conditional Block and useless layers.
    """

    def __init__(self, test_optimizer, param_lr=1.0, y_no_grad=False):
        self.optimizer = test_optimizer
        self.param_lr = param_lr
        self.shape = SHAPE
        self.y_no_grad = y_no_grad
        self._init_param()

    def _init_param(self):
        self.x = np.ones(self.shape).astype('float32')
        self.y = np.ones(self.shape).astype('float32') * 2.
        self.z = np.ones(self.shape).astype('float32') * 3.

    def _calc_gradient(self, cond_i):
        """
        Calculate grads of params
        """
        grads = []
        d_out_val = np.ones_like(self.x).astype("float32") / np.prod(self.shape)
        grads.append(d_out_val)  # x_grad
        if cond_i > 1:
            y_grad_ratio, z_grad_ratio = 0 if self.y_no_grad else 3, 1
        else:
            y_grad_ratio, z_grad_ratio = 3, 0
        if not self.y_no_grad:
            grads.append(d_out_val * y_grad_ratio)  # y_grad
        grads.append(d_out_val * z_grad_ratio)  # z_grad

        return grads

A
arlesniak 已提交
66
    def build_net(self, cond_i, use_bf16=False):
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
        """
        pseudo code:
            sum_xy = x + y
            sub_yz = y - z
            if i > 1:
                internal = y + z
                sum_cond = internal + z
            else:
                sum_cond = y + z
            sum_all = sum_xy + sum_yz + sum_cond
            mean_out = mean(sum_all)
            optimizer.minimize(mean_out)
        """
        param_x = fluid.layers.create_parameter(
            dtype="float32",
            shape=self.shape,
83
            attr=fluid.ParamAttr(learning_rate=self.param_lr, name="param_x"),
84 85 86 87 88
            default_initializer=fluid.initializer.NumpyArrayInitializer(self.x))

        param_y = fluid.layers.create_parameter(
            dtype="float32",
            shape=self.shape,
89
            attr=fluid.ParamAttr(learning_rate=self.param_lr, name="param_y"),
90 91 92 93
            default_initializer=fluid.initializer.NumpyArrayInitializer(self.y))
        param_z = fluid.layers.create_parameter(
            dtype="float32",
            shape=self.shape,
94
            attr=fluid.ParamAttr(learning_rate=self.param_lr, name="param_z"),
95 96 97 98 99 100 101
            default_initializer=fluid.initializer.NumpyArrayInitializer(self.z))

        sum_xy = fluid.layers.elementwise_add(param_x, param_y, name='sum_xy')
        sub_yz = fluid.layers.elementwise_sub(param_y, param_z, name='sub_yz')
        useless = fluid.layers.fc(param_x, size=1, name='fc_useless')

        def cond_true():
102 103 104
            cond_yz = fluid.layers.elementwise_add(param_y,
                                                   param_z,
                                                   name='sum_cond_yz')
105 106
            # param_y will not be updated
            param_y.stop_gradient = self.y_no_grad
107 108 109
            cond_res = fluid.layers.elementwise_add(cond_yz,
                                                    param_z,
                                                    name='sum_cond_true')
110 111 112 113
            cond_useless = fluid.layers.elementwise_mul(param_x, param_y)
            return cond_res

        def cond_false():
114 115 116
            cond_res = fluid.layers.elementwise_add(param_y,
                                                    param_z,
                                                    name='sum_cond_false')
117 118 119 120 121 122
            cond_useless = fluid.layers.elementwise_mul(param_z, param_z)
            return cond_res

        cond_i = fluid.layers.assign(np.array([cond_i], dtype='float32'))
        sum_cond = fluid.layers.cond(cond_i > 1.0, cond_true, cond_false)
        sum_all = fluid.layers.sum([sum_xy, sub_yz, sum_cond])
123
        mean_out = paddle.mean(sum_all)
A
arlesniak 已提交
124 125 126 127 128 129 130 131 132
        if use_bf16:
            import paddle.static.amp as amp
            self.optimizer = amp.bf16.decorate_bf16(
                self.optimizer,
                amp_lists=amp.bf16.AutoMixedPrecisionListsBF16(
                    custom_fp32_list={'elementwise_add'}),
                use_bf16_guard=False,
                use_pure_bf16=True)

133 134 135 136 137 138
        self.optimizer.minimize(mean_out)

        fetch_list = ["param_x", "param_z"] if self.y_no_grad else [
            "param_x", "param_y", "param_z"
        ]
        fetch_list += [_append_grad_suffix_(param) for param in fetch_list]
A
arlesniak 已提交
139
        return fetch_list, self.optimizer
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190


class TestOptimizer(unittest.TestCase):
    """
    TestOptimizer BaseClass to be inherited to test other Optimizer.
    And only need to implement two functions:
        setUp(): to set config info of optimizer, including Optimizer and its hyper-parameter.
        _apply_gradient(): to implement the way of updating grad.
    """

    def setUp(self):
        self._init_config()
        self.optimizer = optimizer.SGDOptimizer(learning_rate=0.001)
        self.attr = {}

    def _init_config(self):
        self.NetClass = SimpleNetWithCond
        self.param_lr = [1.0, 2.0]
        self.cond_i = [0.1, 3]
        self.y_no_grad = [True, False]

    def test_optimizer(self):
        self._check_grads()

    def _apply_gradient(self, param, grad, name):
        """
        The way of updating grad in optimizer.(such as SGD)
        This method should be override.
        """
        return param - self.attr['lr'] * grad

    def _apply_optimize(self, net, grads):
        """
        apply to update all params in the net.
        """
        net.x = self._apply_gradient(net.x, grads[0], 'x')
        if len(grads) == 2:
            net.z = self._apply_gradient(net.z, grads[1], 'z')
            res = [net.x, net.z]
        else:
            net.y = self._apply_gradient(net.y, grads[1], 'y')
            net.z = self._apply_gradient(net.z, grads[2], 'z')
            res = [net.x, net.y, net.z]

        return res

    def _init_param_attr(self):
        self.param_attr = {}
        for key in ['x', 'y', 'z']:
            self.param_attr[key] = self.attr.copy()

A
arlesniak 已提交
191
    def _check_grads(self, use_bf16=False):
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
        """
        main logic code to check the validity of apply_optimize.
        """
        places = [fluid.CPUPlace()]
        if fluid.core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        # test on CPU and GPU
        for place in places:
            for param_lr in self.param_lr:
                for cond_i in self.cond_i:
                    for y_no_grad in self.y_no_grad:
                        self.attr[
                            'lr'] = param_lr * self.optimizer._learning_rate
                        self._init_param_attr()

                        main_program = fluid.Program()
                        init_program = fluid.Program()
                        with fluid.program_guard(main_program, init_program):
                            # reset optimizer._accumulators to avoid duplicate name in loop.
                            self.optimizer._accumulators = defaultdict(
                                lambda: dict())
                            test_net = self.NetClass(self.optimizer, param_lr,
                                                     y_no_grad)
A
arlesniak 已提交
215 216 217 218
                            fetch_list, decorated_optimizer = test_net.build_net(
                                cond_i, use_bf16)
                            if use_bf16:
                                self.optimizer = decorated_optimizer
219 220 221

                            exe = fluid.Executor(place)
                            exe.run(init_program)
A
arlesniak 已提交
222 223 224
                            if use_bf16:
                                self.optimizer.amp_init(exe.place)

225 226 227 228 229 230
                            # Train 2 steps to check validity
                            for batch_i in range(2):

                                res = exe.run(main_program,
                                              fetch_list=fetch_list)
                                gt_grads = test_net._calc_gradient(cond_i)
231 232
                                gt_params = self._apply_optimize(
                                    test_net, gt_grads)
233 234
                                param_grads = gt_params + gt_grads
                                for i in range(len(res)):
235 236
                                    np.testing.assert_allclose(
                                        res[i], param_grads[i])
237 238


A
arlesniak 已提交
239 240 241
@unittest.skipIf(not fluid.core.supports_bfloat16(),
                 "place does not support BF16 evaluation")
class TestSGDOptimizer(TestOptimizer):
242

A
arlesniak 已提交
243 244 245 246 247 248
    def test_optimizer_multiblock_except(self):
        with self.assertRaisesRegexp(ValueError,
                                     "var param_y not in this block"):
            self._check_grads(use_bf16=True)


249 250 251 252 253 254 255 256 257 258
class TestAdamOptimizer(TestOptimizer):
    """
    inherit TestOptimizer and shall override two functions as follows:
        setUp(): to set config info of optimizer, including Optimizer and its hyper-parameter.
        _apply_gradient(): to implement the way of updating grad.
    """

    def setUp(self):
        self._init_config()
        beta1, beta2, epsilon = 0.9, 0.999, 1e-8
259 260 261 262
        self.optimizer = optimizer.AdamOptimizer(learning_rate=0.01,
                                                 beta1=beta1,
                                                 beta2=beta2,
                                                 epsilon=epsilon)
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
        self.attr = {
            "beta1": beta1,
            "beta2": beta2,
            "beta1_pow": beta1,
            "beta2_pow": beta2,
            "moment1": np.zeros(SHAPE).astype("float32"),
            "moment2": np.zeros(SHAPE).astype("float32"),
            "epsilon": epsilon
        }

    def _apply_gradient(self, param, grad, name):
        """
        The way of updating grad in AdamOptimizer
        """
        attr = self.param_attr[name]
        beta1, beta2 = attr["beta1"], attr["beta2"]
        moment1, moment2 = attr['moment1'], attr['moment2']
        beta1_pow, beta2_pow = attr['beta1_pow'], attr['beta2_pow']
        epsilon = attr['epsilon']

        moment1_out = beta1 * moment1 + (1. - beta1) * grad
        moment2_out = beta2 * moment2 + (1. - beta2) * np.square(grad)

        lr = attr['lr'] * np.sqrt(1. - beta2_pow) / (1. - beta1_pow)
287 288 289
        param_out = param - lr * (
            moment1_out /
            (np.sqrt(moment2_out) + epsilon * np.sqrt(1 - beta2_pow)))
290 291 292 293 294 295 296 297 298 299 300 301

        # update hyper-parameter of optimizer
        self.param_attr[name]['beta1_pow'] = beta1_pow * beta1
        self.param_attr[name]['beta2_pow'] = beta2_pow * beta2
        self.param_attr[name]['moment1'] = moment1_out
        self.param_attr[name]['moment2'] = moment2_out

        return param_out


if __name__ == '__main__':
    unittest.main()