test_multiprocess_dataloader_exception.py 8.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import sys
import six
import time
import unittest
import multiprocessing
import numpy as np

import paddle.fluid as fluid
24
import paddle.fluid.core as core
25
from paddle.io import Dataset, IterableDataset, BatchSampler, DataLoader
26 27
from paddle.fluid.dygraph.nn import Linear
from paddle.fluid.dygraph.base import to_variable
28
from paddle.fluid.dataloader.dataloader_iter import _worker_loop
29 30 31


class RandomDataset(Dataset):
32

33 34 35 36 37 38 39 40 41 42 43 44 45 46
    def __init__(self, sample_num):
        self.sample_num = sample_num

    def __getitem__(self, idx):
        np.random.seed(idx)
        image = np.random.random([784]).astype('float32')
        label = np.random.randint(0, 9, (1, )).astype('int64')
        return image, label

    def __len__(self):
        return self.sample_num


class TestDataLoaderAssert(unittest.TestCase):
47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
    def test_main(self):
        place = fluid.cpu_places()[0]
        with fluid.dygraph.guard(place):
            dataset = RandomDataset(100)
            batch_sampler = BatchSampler(dataset=dataset, batch_size=4)

            # dataset is not instance of Dataset
            try:
                loader = DataLoader(dataset=batch_sampler, places=place)
                self.assertTrue(False)
            except AssertionError:
                pass

            # places is None
            try:
                loader = DataLoader(dataset=dataset, places=None)
                self.assertTrue(False)
            except AssertionError:
                pass

            # num_workers < 0
            try:
70 71 72
                loader = DataLoader(dataset=dataset,
                                    places=place,
                                    num_workers=-1)
73 74 75 76 77 78 79 80 81 82 83 84 85
                self.assertTrue(False)
            except AssertionError:
                pass

            # timeout < 0
            try:
                loader = DataLoader(dataset=dataset, places=place, timeout=-1)
                self.assertTrue(False)
            except AssertionError:
                pass

            # set batch_sampler and shuffle/batch_size/drop_last
            try:
86 87 88 89 90
                loader = DataLoader(dataset=dataset,
                                    places=place,
                                    batch_sampler=batch_sampler,
                                    shuffle=True,
                                    drop_last=True)
91 92 93 94 95 96
                self.assertTrue(False)
            except AssertionError:
                pass

            # set batch_sampler correctly
            try:
97 98 99
                loader = DataLoader(dataset=dataset,
                                    places=place,
                                    batch_sampler=batch_sampler)
100 101 102 103 104
                self.assertTrue(True)
            except AssertionError:
                self.assertTrue(False)


105
class TestDatasetRuntimeError(unittest.TestCase):
106

107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
    def test_main(self):
        dataset = Dataset()

        # __getitem__ not implement
        try:
            d = dataset[0]
            self.assertTrue(False)
        except NotImplementedError:
            pass

        # __len__ not implement
        try:
            l = len(dataset)
            self.assertTrue(False)
        except NotImplementedError:
            pass

        dataset = IterableDataset()

        # __iter__ not implement
        try:
            d = iter(dataset)
            self.assertTrue(False)
        except NotImplementedError:
            pass

        # __getitem__ runtime error
        try:
            d = dataset[0]
            self.assertTrue(False)
        except RuntimeError:
            pass

        # __len__ runtime error
        try:
            l = len(dataset)
            self.assertTrue(False)
        except RuntimeError:
            pass


148 149
# CI Converage cannot record stub in subprocess,
# HACK a _worker_loop in main process call here
150 151
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
152
class TestDataLoaderWorkerLoop(unittest.TestCase):
153

154 155 156 157 158 159 160 161 162 163 164 165 166
    def run_without_worker_done(self, use_shared_memory=True):
        try:
            place = fluid.cpu_places()[0]
            with fluid.dygraph.guard(place):
                dataset = RandomDataset(800)

                # test init_fn
                def _init_fn(worker_id):
                    pass

                # test collate_fn
                def _collate_fn(sample_list):
                    return [
167
                        np.stack(s, axis=0) for s in list(zip(*sample_list))
168 169
                    ]

170 171 172 173
                loader = DataLoader(dataset,
                                    num_workers=1,
                                    places=place,
                                    use_shared_memory=use_shared_memory)
174 175 176 177 178 179 180 181
                assert loader.num_workers > 0, \
                    "go to AssertionError and pass in Mac and Windows"
                loader = iter(loader)
                print("loader length", len(loader))
                indices_queue = multiprocessing.Queue()
                for i in range(10):
                    indices_queue.put([i, i + 10])
                indices_queue.put(None)
182
                base_seed = 1234
183 184
                _worker_loop(loader._dataset, 0, indices_queue,
                             loader._data_queue, loader._workers_done_event,
185
                             True, _collate_fn, True, _init_fn, 0, 1,
186
                             loader._use_shared_memory, base_seed)
187 188 189
                self.assertTrue(False)
        except AssertionError:
            pass
190 191 192 193
        except Exception as e:
            print("Exception", e)
            import sys
            sys.stdout.flush()
194 195 196 197
            self.assertTrue(False)

    def run_with_worker_done(self, use_shared_memory=True):
        try:
198
            place = fluid.CPUPlace()
199 200 201 202 203 204 205 206 207 208
            with fluid.dygraph.guard(place):
                dataset = RandomDataset(800)

                # test init_fn
                def _init_fn(worker_id):
                    pass

                # test collate_fn
                def _collate_fn(sample_list):
                    return [
209
                        np.stack(s, axis=0) for s in list(zip(*sample_list))
210 211
                    ]

212 213 214 215
                loader = DataLoader(dataset,
                                    num_workers=1,
                                    places=place,
                                    use_shared_memory=use_shared_memory)
216 217 218 219 220 221 222 223 224
                assert loader.num_workers > 0, \
                    "go to AssertionError and pass in Mac and Windows"
                loader = iter(loader)
                print("loader length", len(loader))
                indices_queue = multiprocessing.Queue()
                for i in range(10):
                    indices_queue.put([i, i + 10])
                indices_queue.put(None)
                loader._workers_done_event.set()
225
                base_seed = 1234
226 227
                _worker_loop(loader._dataset, 0, indices_queue,
                             loader._data_queue, loader._workers_done_event,
228
                             True, _collate_fn, True, _init_fn, 0, 1,
229
                             loader._use_shared_memory, base_seed)
230 231 232 233 234 235 236
                self.assertTrue(True)
        except AssertionError:
            pass
        except Exception:
            self.assertTrue(False)

    def test_main(self):
237 238
        # only HACK a subprocess call here, do not need to use_shared_memory
        for use_shared_memory in [False]:
239 240 241 242 243 244
            self.run_without_worker_done(use_shared_memory)
            self.run_with_worker_done(use_shared_memory)


if __name__ == '__main__':
    unittest.main()