test_mean_op.py 15.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

L
liaogang 已提交
15 16
import unittest
import numpy as np
A
arlesniak 已提交
17
from op_test import OpTest, OpTestTool
18
import paddle
C
chengduo 已提交
19
import paddle.fluid.core as core
20 21
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard
22
from paddle.fluid.framework import _test_eager_guard
23
from test_sum_op import TestReduceOPTensorAxisBase
24 25 26
import gradient_checker
from decorator_helper import prog_scope
import paddle.fluid.layers as layers
27

28 29
np.random.seed(10)

L
liaogang 已提交
30

31 32 33 34 35 36 37 38 39 40 41 42
def mean_wrapper(x, axis=None, keepdim=False, reduce_all=False):
    if reduce_all == True:
        return paddle.mean(x, range(len(x.shape)), keepdim)
    return paddle.mean(x, axis, keepdim)


def reduce_mean_wrapper(x, axis=0, keepdim=False, reduce_all=False):
    if reduce_all == True:
        return paddle.mean(x, range(len(x.shape)), keepdim)
    return paddle.mean(x, axis, keepdim)


Q
qijun 已提交
43
class TestMeanOp(OpTest):
44

L
liaogang 已提交
45
    def setUp(self):
Q
qijun 已提交
46
        self.op_type = "mean"
47
        self.python_api = paddle.mean
48
        self.dtype = np.float64
C
chengduo 已提交
49 50
        self.init_dtype_type()
        self.inputs = {'X': np.random.random((10, 10)).astype(self.dtype)}
Q
qijun 已提交
51
        self.outputs = {'Out': np.mean(self.inputs["X"])}
L
liaogang 已提交
52

C
chengduo 已提交
53 54 55
    def init_dtype_type(self):
        pass

Q
qijun 已提交
56
    def test_check_output(self):
57
        self.check_output(check_eager=True)
L
liaogang 已提交
58

Q
qijun 已提交
59
    def test_checkout_grad(self):
60
        self.check_grad(['X'], 'Out', check_eager=True)
61 62


63
class TestMeanOpError(unittest.TestCase):
64

65 66 67 68
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The input type of mean_op must be Variable.
            input1 = 12
69
            self.assertRaises(TypeError, paddle.mean, input1)
70
            # The input dtype of mean_op must be float16, float32, float64.
71 72 73
            input2 = fluid.layers.data(name='input2',
                                       shape=[12, 10],
                                       dtype="int32")
74
            self.assertRaises(TypeError, paddle.mean, input2)
75 76 77
            input3 = fluid.layers.data(name='input3',
                                       shape=[4],
                                       dtype="float16")
78 79 80
            fluid.layers.softmax(input3)


C
chengduo 已提交
81 82 83
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestFP16MeanOp(TestMeanOp):
84

C
chengduo 已提交
85 86
    def init_dtype_type(self):
        self.dtype = np.float16
S
sneaxiy 已提交
87
        self.__class__.no_need_check_grad = True
C
chengduo 已提交
88 89 90 91

    def test_check_output(self):
        place = core.CUDAPlace(0)
        if core.is_float16_supported(place):
92
            self.check_output_with_place(place, check_eager=True)
C
chengduo 已提交
93 94 95 96

    def test_checkout_grad(self):
        place = core.CUDAPlace(0)
        if core.is_float16_supported(place):
S
sneaxiy 已提交
97 98 99 100
            with fluid.dygraph.guard():
                x_np = np.random.random((10, 10)).astype(self.dtype)
                x = paddle.to_tensor(x_np)
                x.stop_gradient = False
101
                y = paddle.mean(x)
S
sneaxiy 已提交
102 103 104
                dx = paddle.grad(y, x)[0].numpy()
                dx_expected = self.dtype(1.0 / np.prod(x_np.shape)) * np.ones(
                    x_np.shape).astype(self.dtype)
105
                np.testing.assert_array_equal(dx, dx_expected)
C
chengduo 已提交
106 107


A
arlesniak 已提交
108 109
@OpTestTool.skip_if_not_cpu_bf16()
class TestBF16MeanOp(TestMeanOp):
110

A
arlesniak 已提交
111 112 113 114 115
    def init_dtype_type(self):
        self.dtype = np.uint16

    def test_check_output(self):
        paddle.enable_static()
116
        self.check_output_with_place(core.CPUPlace(), check_eager=True)
A
arlesniak 已提交
117 118 119

    def test_checkout_grad(self):
        place = core.CPUPlace()
120
        self.check_grad_with_place(place, ['X'], 'Out', check_eager=True)
A
arlesniak 已提交
121 122


123 124 125 126 127 128 129 130
def ref_reduce_mean(x, axis=None, keepdim=False, reduce_all=False):
    if isinstance(axis, list):
        axis = tuple(axis)
    if reduce_all:
        axis = None
    return np.mean(x, axis=axis, keepdims=keepdim)


S
sneaxiy 已提交
131 132 133 134 135 136 137 138
def ref_reduce_mean_grad(x, axis, dtype):
    if reduce_all:
        axis = list(range(x.ndim))

    shape = [x.shape[i] for i in axis]
    return (1.0 / np.prod(shape) * np.ones(shape)).astype(dtype)


139
class TestReduceMeanOp(OpTest):
140

141 142
    def setUp(self):
        self.op_type = 'reduce_mean'
143
        self.python_api = reduce_mean_wrapper
144 145 146 147 148 149 150 151
        self.dtype = 'float64'
        self.shape = [2, 3, 4, 5]
        self.axis = [0]
        self.keepdim = False
        self.set_attrs()

        np.random.seed(10)
        x_np = np.random.uniform(-1, 1, self.shape).astype(self.dtype)
S
sneaxiy 已提交
152 153 154
        if not hasattr(self, "reduce_all"):
            self.reduce_all = (not self.axis) or len(self.axis) == len(x_np)

155 156 157 158 159 160 161 162 163
        out_np = ref_reduce_mean(x_np, self.axis, self.keepdim, self.reduce_all)
        self.inputs = {'X': x_np}
        self.outputs = {'Out': out_np}
        self.attrs = {
            'dim': self.axis,
            'keep_dim': self.keepdim,
            'reduce_all': self.reduce_all
        }

S
sneaxiy 已提交
164 165 166
        if self.dtype == 'float16':
            self.__class__.no_need_check_grad = True

167 168 169 170
    def set_attrs(self):
        pass

    def test_check_output(self):
S
sneaxiy 已提交
171
        if self.dtype != 'float16':
172
            self.check_output(check_eager=True)
S
sneaxiy 已提交
173 174 175 176 177
        else:
            if not core.is_compiled_with_cuda():
                return
            place = paddle.CUDAPlace(0)
            self.check_output_with_place(place=place)
178 179

    def test_check_grad(self):
S
sneaxiy 已提交
180
        if self.dtype != 'float16':
181
            self.check_grad(['X'], ['Out'], check_eager=True)
S
sneaxiy 已提交
182 183 184 185 186 187 188 189 190
        else:
            return
            if not core.is_compiled_with_cuda():
                return
            place = paddle.CUDAPlace(0)
            if core.is_float16_supported(place):
                return
            with fluid.dygraph.guard(place=place):
                x = paddle.tensor(self.inputs['X'])
191 192 193
                y = paddle.mean(x,
                                axis=self.attrs['dim'],
                                keepdim=self.attrs['keep_dim'])
S
sneaxiy 已提交
194
                dx = paddle.grad(y, x)[0].numpy()
195 196 197
                dx_expected = ref_reduce_mean_grad(self.inputs['X'],
                                                   self.attrs['dim'],
                                                   self.dtype)
198
                np.testing.assert_array_equal(dx, dx_expected)
199 200 201


class TestReduceMeanOpDefaultAttrs(TestReduceMeanOp):
202

203 204
    def setUp(self):
        self.op_type = 'reduce_mean'
205
        self.python_api = reduce_mean_wrapper
206 207 208 209 210 211 212 213 214 215
        self.dtype = 'float64'
        self.shape = [2, 3, 4, 5]

        x_np = np.random.uniform(-1, 1, self.shape).astype(self.dtype)
        out_np = np.mean(x_np, axis=0)
        self.inputs = {'X': x_np}
        self.outputs = {'Out': out_np}


class TestReduceMeanOpFloat32(TestReduceMeanOp):
216

217 218 219 220
    def set_attrs(self):
        self.dtype = 'float32'


S
sneaxiy 已提交
221
class TestReduceMeanOpFloat16(TestReduceMeanOp):
222

S
sneaxiy 已提交
223 224 225 226
    def set_attrs(self):
        self.dtype = 'float16'


227
class TestReduceMeanOpShape1D(TestReduceMeanOp):
228

229 230 231 232
    def set_attrs(self):
        self.shape = [100]


S
sneaxiy 已提交
233
class TestReduceMeanOpShape1DFP16(TestReduceMeanOp):
234

S
sneaxiy 已提交
235 236 237 238 239
    def set_attrs(self):
        self.shape = [100]
        self.dtype = 'float16'


240
class TestReduceMeanOpShape6D(TestReduceMeanOp):
241

242 243 244 245
    def set_attrs(self):
        self.shape = [2, 3, 4, 5, 6, 7]


S
sneaxiy 已提交
246
class TestReduceMeanOpShape6DFP16(TestReduceMeanOp):
247

S
sneaxiy 已提交
248 249 250 251 252
    def set_attrs(self):
        self.shape = [2, 3, 4, 5, 6, 7]
        self.dtype = 'float16'


253
class TestReduceMeanOpAxisAll(TestReduceMeanOp):
254

255 256 257 258
    def set_attrs(self):
        self.axis = [0, 1, 2, 3]


S
sneaxiy 已提交
259
class TestReduceMeanOpAxisAllFP16(TestReduceMeanOp):
260

S
sneaxiy 已提交
261 262 263 264 265
    def set_attrs(self):
        self.axis = [0, 1, 2, 3]
        self.dtype = 'float16'


266
class TestReduceMeanOpAxisTuple(TestReduceMeanOp):
267

268 269 270 271
    def set_attrs(self):
        self.axis = (0, 1, 2)


S
sneaxiy 已提交
272
class TestReduceMeanOpAxisTupleFP16(TestReduceMeanOp):
273

S
sneaxiy 已提交
274 275 276 277 278
    def set_attrs(self):
        self.axis = (0, 1, 2)
        self.dtype = 'float16'


279
class TestReduceMeanOpAxisNegative(TestReduceMeanOp):
280

281 282 283 284
    def set_attrs(self):
        self.axis = [-2, -1]


S
sneaxiy 已提交
285
class TestReduceMeanOpAxisNegativeFP16(TestReduceMeanOp):
286

S
sneaxiy 已提交
287 288 289 290 291
    def set_attrs(self):
        self.axis = [-2, -1]
        self.dtype = 'float16'


292
class TestReduceMeanOpKeepdimTrue1(TestReduceMeanOp):
293

294 295 296 297
    def set_attrs(self):
        self.keepdim = True


S
sneaxiy 已提交
298
class TestReduceMeanOpKeepdimTrue1FP16(TestReduceMeanOp):
299

S
sneaxiy 已提交
300 301 302 303 304
    def set_attrs(self):
        self.keepdim = True
        self.dtype = 'float16'


305
class TestReduceMeanOpKeepdimTrue2(TestReduceMeanOp):
306

307 308 309 310 311
    def set_attrs(self):
        self.axis = [0, 1, 2, 3]
        self.keepdim = True


S
sneaxiy 已提交
312
class TestReduceMeanOpKeepdimTrue2FP16(TestReduceMeanOp):
313

S
sneaxiy 已提交
314 315 316 317 318 319
    def set_attrs(self):
        self.axis = [0, 1, 2, 3]
        self.keepdim = True
        self.dtype = 'float16'


320
class TestReduceMeanOpReduceAllTrue(TestReduceMeanOp):
321

322 323 324 325
    def set_attrs(self):
        self.reduce_all = True


S
sneaxiy 已提交
326
class TestReduceMeanOpReduceAllTrueFP16(TestReduceMeanOp):
327

S
sneaxiy 已提交
328 329 330 331 332
    def set_attrs(self):
        self.reduce_all = True
        self.dtype = 'float16'


333
class TestMeanAPI(unittest.TestCase):
334
    # test paddle.tensor.stat.mean
335 336 337 338 339 340 341 342

    def setUp(self):
        self.x_shape = [2, 3, 4, 5]
        self.x = np.random.uniform(-1, 1, self.x_shape).astype(np.float32)
        self.place = paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_api_static(self):
Z
Fix  
zhupengyang 已提交
343
        paddle.enable_static()
344
        with paddle.static.program_guard(paddle.static.Program()):
345
            x = paddle.fluid.data('X', self.x_shape)
346 347 348 349 350 351 352 353 354 355 356 357
            out1 = paddle.mean(x)
            out2 = paddle.tensor.mean(x)
            out3 = paddle.tensor.stat.mean(x)
            axis = np.arange(len(self.x_shape)).tolist()
            out4 = paddle.mean(x, axis)
            out5 = paddle.mean(x, tuple(axis))

            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x},
                          fetch_list=[out1, out2, out3, out4, out5])
        out_ref = np.mean(self.x)
        for out in res:
358
            np.testing.assert_allclose(out, out_ref, rtol=0.0001)
359

Z
Fix  
zhupengyang 已提交
360 361 362
    def test_api_dygraph(self):
        paddle.disable_static(self.place)

363
        def test_case(x, axis=None, keepdim=False):
Z
Zhou Wei 已提交
364
            x_tensor = paddle.to_tensor(x)
365 366 367 368 369 370
            out = paddle.mean(x_tensor, axis, keepdim)
            if isinstance(axis, list):
                axis = tuple(axis)
                if len(axis) == 0:
                    axis = None
            out_ref = np.mean(x, axis, keepdims=keepdim)
371
            np.testing.assert_allclose(out.numpy(), out_ref, rtol=0.0001)
372 373 374 375 376 377 378 379 380 381 382

        test_case(self.x)
        test_case(self.x, [])
        test_case(self.x, -1)
        test_case(self.x, keepdim=True)
        test_case(self.x, 2, keepdim=True)
        test_case(self.x, [0, 2])
        test_case(self.x, (0, 2))
        test_case(self.x, [0, 1, 2, 3])
        paddle.enable_static()

383 384 385 386 387 388 389 390
    def test_fluid_api(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            x = fluid.data("x", shape=[10, 10], dtype="float32")
            out = fluid.layers.reduce_mean(input=x, dim=1)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            x_np = np.random.rand(10, 10).astype(np.float32)
            res = exe.run(feed={"x": x_np}, fetch_list=[out])
391
        np.testing.assert_allclose(res[0], np.mean(x_np, axis=1), rtol=1e-05)
392 393 394 395 396

        with fluid.dygraph.guard():
            x_np = np.random.rand(10, 10).astype(np.float32)
            x = fluid.dygraph.to_variable(x_np)
            out = fluid.layers.reduce_mean(input=x, dim=1)
397 398 399
        np.testing.assert_allclose(out.numpy(),
                                   np.mean(x_np, axis=1),
                                   rtol=1e-05)
400

401
    def test_errors(self):
402 403 404 405 406
        paddle.disable_static()
        x = np.random.uniform(-1, 1, [10, 12]).astype('float32')
        x = paddle.to_tensor(x)
        self.assertRaises(Exception, paddle.mean, x, -3)
        self.assertRaises(Exception, paddle.mean, x, 2)
Z
Fix  
zhupengyang 已提交
407
        paddle.enable_static()
408
        with paddle.static.program_guard(paddle.static.Program()):
409
            x = paddle.fluid.data('X', [10, 12], 'int32')
410 411 412
            self.assertRaises(TypeError, paddle.mean, x)


413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
class TestMeanWithTensorAxis1(TestReduceOPTensorAxisBase):

    def init_data(self):
        self.pd_api = paddle.mean
        self.np_api = np.mean
        self.x = paddle.randn([10, 5, 9, 9], dtype='float64')
        self.np_axis = np.array([1, 2], dtype='int64')
        self.tensor_axis = paddle.to_tensor([1, 2], dtype='int64')


class TestMeanWithTensorAxis2(TestReduceOPTensorAxisBase):

    def init_data(self):
        self.pd_api = paddle.mean
        self.np_api = np.mean
        self.x = paddle.randn([10, 10, 9, 9], dtype='float64')
        self.np_axis = np.array([0, 1, 2], dtype='int64')
        self.tensor_axis = [
            0,
            paddle.to_tensor([1], 'int64'),
            paddle.to_tensor([2], 'int64')
        ]


437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
class TestMeanDoubleGradCheck(unittest.TestCase):

    def mean_wrapper(self, x):
        return paddle.mean(x[0])

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

        data = layers.data('data', [3, 4, 5], False, dtype)
        data.persistable = True
        out = paddle.mean(data)
        data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)

        gradient_checker.double_grad_check([data],
                                           out,
                                           x_init=[data_arr],
                                           place=place,
                                           eps=eps)
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
        gradient_checker.double_grad_check_for_dygraph(self.mean_wrapper,
                                                       [data],
                                                       out,
                                                       x_init=[data_arr],
                                                       place=place)

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestMeanTripleGradCheck(unittest.TestCase):

    def mean_wrapper(self, x):
        return paddle.mean(x[0])

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

        data = layers.data('data', [3, 4, 5], False, dtype)
        data.persistable = True
        out = paddle.mean(data)
        data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)

        gradient_checker.triple_grad_check([data],
                                           out,
                                           x_init=[data_arr],
                                           place=place,
                                           eps=eps)
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
        gradient_checker.triple_grad_check_for_dygraph(self.mean_wrapper,
                                                       [data],
                                                       out,
                                                       x_init=[data_arr],
                                                       place=place)

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


Q
qijun 已提交
511
if __name__ == "__main__":
512
    paddle.enable_static()
L
liaogang 已提交
513
    unittest.main()