test_flip.py 6.9 KB
Newer Older
W
Wilber 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
from paddle.fluid import Program, program_guard
from op_test import OpTest
22 23 24
import gradient_checker
from decorator_helper import prog_scope
import paddle.fluid.layers as layers
W
Wilber 已提交
25 26 27 28 29 30 31 32 33


class TestFlipOp_API(unittest.TestCase):
    """Test flip api."""

    def test_static_graph(self):
        startup_program = fluid.Program()
        train_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
Y
yaoxuefeng 已提交
34
            axis = [0]
W
Wilber 已提交
35
            input = fluid.data(name='input', dtype='float32', shape=[2, 3])
Y
yaoxuefeng 已提交
36
            output = paddle.flip(input, axis)
R
Roc 已提交
37 38
            output = paddle.flip(output, -1)
            output = output.flip(0)
W
Wilber 已提交
39 40 41 42 43 44 45 46 47 48
            place = fluid.CPUPlace()
            if fluid.core.is_compiled_with_cuda():
                place = fluid.CUDAPlace(0)
            exe = fluid.Executor(place)
            exe.run(startup_program)
            img = np.array([[1, 2, 3], [4, 5, 6]]).astype(np.float32)
            res = exe.run(train_program,
                          feed={'input': img},
                          fetch_list=[output])
            out_np = np.array(res[0])
R
Roc 已提交
49
            out_ref = np.array([[3, 2, 1], [6, 5, 4]]).astype(np.float32)
50 51
            self.assertTrue((out_np == out_ref).all(),
                            msg='flip output is wrong, out =' + str(out_np))
W
Wilber 已提交
52 53 54 55 56 57

    def test_dygraph(self):
        img = np.array([[1, 2, 3], [4, 5, 6]]).astype(np.float32)
        with fluid.dygraph.guard():
            inputs = fluid.dygraph.to_variable(img)
            ret = paddle.flip(inputs, [0])
R
Roc 已提交
58 59 60 61
            ret = ret.flip(0)
            ret = paddle.flip(ret, 1)
            out_ref = np.array([[3, 2, 1], [6, 5, 4]]).astype(np.float32)

W
Wilber 已提交
62 63 64 65 66 67
            self.assertTrue(
                (ret.numpy() == out_ref).all(),
                msg='flip output is wrong, out =' + str(ret.numpy()))


class TestFlipOp(OpTest):
68

W
Wilber 已提交
69 70
    def setUp(self):
        self.op_type = 'flip'
H
hong 已提交
71
        self.python_api = paddle.tensor.flip
W
Wilber 已提交
72 73 74 75 76 77
        self.init_test_case()
        self.inputs = {'X': np.random.random(self.in_shape).astype('float64')}
        self.init_attrs()
        self.outputs = {'Out': self.calc_ref_res()}

    def init_attrs(self):
Y
yaoxuefeng 已提交
78
        self.attrs = {"axis": self.axis}
W
Wilber 已提交
79 80

    def test_check_output(self):
H
hong 已提交
81
        self.check_output(check_eager=True)
W
Wilber 已提交
82 83

    def test_check_grad(self):
H
hong 已提交
84
        self.check_grad(["X"], "Out", check_eager=True)
W
Wilber 已提交
85 86 87

    def init_test_case(self):
        self.in_shape = (6, 4, 2, 3)
Y
yaoxuefeng 已提交
88
        self.axis = [0, 1]
W
Wilber 已提交
89 90 91

    def calc_ref_res(self):
        res = self.inputs['X']
R
Roc 已提交
92 93
        if isinstance(self.axis, int):
            return np.flip(res, self.axis)
Y
yaoxuefeng 已提交
94
        for axis in self.axis:
W
Wilber 已提交
95 96 97 98 99
            res = np.flip(res, axis)
        return res


class TestFlipOpAxis1(TestFlipOp):
100

W
Wilber 已提交
101 102
    def init_test_case(self):
        self.in_shape = (2, 4, 4)
Y
yaoxuefeng 已提交
103
        self.axis = [0]
W
Wilber 已提交
104 105 106


class TestFlipOpAxis2(TestFlipOp):
107

W
Wilber 已提交
108 109
    def init_test_case(self):
        self.in_shape = (4, 4, 6, 3)
Y
yaoxuefeng 已提交
110
        self.axis = [0, 2]
W
Wilber 已提交
111 112 113


class TestFlipOpAxis3(TestFlipOp):
114

W
Wilber 已提交
115 116
    def init_test_case(self):
        self.in_shape = (4, 3, 1)
Y
yaoxuefeng 已提交
117
        self.axis = [0, 1, 2]
W
Wilber 已提交
118 119 120


class TestFlipOpAxis4(TestFlipOp):
121

W
Wilber 已提交
122 123
    def init_test_case(self):
        self.in_shape = (6, 4, 2, 2)
Y
yaoxuefeng 已提交
124 125 126 127
        self.axis = [0, 1, 2, 3]


class TestFlipOpEmptyAxis(TestFlipOp):
128

Y
yaoxuefeng 已提交
129 130 131 132 133 134
    def init_test_case(self):
        self.in_shape = (6, 4, 2, 2)
        self.axis = []


class TestFlipOpNegAxis(TestFlipOp):
135

Y
yaoxuefeng 已提交
136 137 138
    def init_test_case(self):
        self.in_shape = (6, 4, 2, 2)
        self.axis = [-1]
W
Wilber 已提交
139 140


141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
class TestFlipDoubleGradCheck(unittest.TestCase):

    def flip_wrapper(self, x):
        return paddle.flip(x[0], [0, 1])

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

        data = layers.data('data', [3, 2, 2], False, dtype)
        data.persistable = True
        out = paddle.flip(data, [0, 1])
        data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)

        gradient_checker.double_grad_check([data],
                                           out,
                                           x_init=[data_arr],
                                           place=place,
                                           eps=eps)
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
        gradient_checker.double_grad_check_for_dygraph(self.flip_wrapper,
                                                       [data],
                                                       out,
                                                       x_init=[data_arr],
                                                       place=place)

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestFlipTripleGradCheck(unittest.TestCase):

    def flip_wrapper(self, x):
        return paddle.flip(x[0], [0, 1])

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

        data = layers.data('data', [3, 2, 2], False, dtype)
        data.persistable = True
        out = paddle.flip(data, [0, 1])
        data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)

        gradient_checker.triple_grad_check([data],
                                           out,
                                           x_init=[data_arr],
                                           place=place,
                                           eps=eps)
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
        gradient_checker.triple_grad_check_for_dygraph(self.flip_wrapper,
                                                       [data],
                                                       out,
                                                       x_init=[data_arr],
                                                       place=place)

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


W
Wilber 已提交
215
if __name__ == "__main__":
H
hong 已提交
216
    paddle.enable_static()
W
Wilber 已提交
217
    unittest.main()