test_collective_base.py 13.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import unittest
import time
import argparse
import os
import sys
import subprocess
import traceback
import functools
import pickle
25
import tempfile
26 27 28 29 30 31 32
from contextlib import closing
import paddle.fluid as fluid
import paddle.fluid.unique_name as nameGen
from paddle.fluid import core


class TestCollectiveRunnerBase(object):
33

34 35 36 37 38 39 40 41 42 43
    def get_model(self, train_prog, startup_prog):
        raise NotImplementedError(
            "get model should be implemented by child class.")

    def wait_server_ready(self, endpoints):
        while True:
            all_ok = True
            not_ready_endpoints = []
            for ep in endpoints:
                ip_port = ep.split(":")
44 45
                with closing(socket.socket(socket.AF_INET,
                                           socket.SOCK_STREAM)) as sock:
46
                    sock.settimeout(2)
47 48 49 50 51
                    sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
                    if hasattr(socket, 'SO_REUSEPORT'):
                        sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEPORT,
                                        1)

52 53 54 55 56 57
                    result = sock.connect_ex((ip_port[0], int(ip_port[1])))
                    if result != 0:
                        all_ok = False
                        not_ready_endpoints.append(ep)
            if not all_ok:
                sys.stderr.write("server not ready, wait 3 sec to retry...\n")
58 59
                sys.stderr.write("not ready endpoints:" +
                                 str(not_ready_endpoints) + "\n")
60 61 62 63 64
                sys.stderr.flush()
                time.sleep(3)
            else:
                break

65

66 67 68 69 70 71 72 73 74
#endpoints should be ["ip1:port1","ip2:port2"]

    def initCommunicator(self, program, rank, nranks, wait_port,
                         current_endpoint, endpoints):
        other_endpoints = endpoints[:]
        other_endpoints.remove(current_endpoint)
        if rank == 0 and wait_port:
            self.wait_server_ready(other_endpoints)
        block = program.global_block()
75 76 77
        nccl_id_var = block.create_var(name=nameGen.generate('nccl_id'),
                                       persistable=True,
                                       type=core.VarDesc.VarType.RAW)
78

79 80 81 82 83 84 85 86
        block.append_op(type='c_gen_nccl_id',
                        inputs={},
                        outputs={'Out': nccl_id_var},
                        attrs={
                            'rank': rank,
                            'endpoint': current_endpoint,
                            'other_endpoints': other_endpoints
                        })
87

88 89 90 91 92 93 94 95
        block.append_op(type='c_comm_init',
                        inputs={'X': nccl_id_var},
                        outputs={},
                        attrs={
                            'nranks': nranks,
                            'rank': rank,
                            'ring_id': self.global_ring_id
                        })
96 97 98 99 100 101 102 103 104 105

    def run_trainer(self, args):
        train_prog = fluid.Program()
        startup_prog = fluid.Program()
        endpoints = args["endpoints"].split(",")
        rank = args["trainerid"]
        current_endpoint = args["currentendpoint"]
        nranks = 2
        self.initCommunicator(startup_prog, rank, nranks, True,
                              current_endpoint, endpoints)
L
lilong12 已提交
106
        self.rank = rank
107 108 109 110 111 112 113 114 115 116 117
        result = self.get_model(train_prog, startup_prog)
        device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
        place = fluid.CUDAPlace(
            device_id)  #if args.use_gpu else fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(startup_prog)
        np.random.seed(os.getpid())
        indata = np.random.random((10, 1000))
        out = exe.run(train_prog,
                      feed={'tindata': indata},
                      fetch_list=[result.name])
T
tianshuo78520a 已提交
118
        sys.stdout.buffer.write(pickle.dumps(out))
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138


def runtime_main(test_class, col_type, sub_type):
    args = {}
    model = test_class()
    args["deviceid"] = os.getenv("FLAGS_selected_gpus")
    args["trainerid"] = int(os.getenv("PADDLE_TRAINER_ID"))
    args["trainernum"] = int(os.getenv("PADDLE_TRAINERS_NUM"))
    args["endpoints"] = os.getenv('PADDLE_TRAINER_ENDPOINTS')
    args["currentendpoint"] = os.getenv("PADDLE_CURRENT_ENDPOINT")
    args["col_type"] = col_type
    model.run_trainer(args)


import paddle.compat as cpt
import socket
from contextlib import closing


class TestDistBase(unittest.TestCase):
139

140 141 142 143 144 145 146
    def setUp(self):
        self._port_set = set()
        self._trainers = 2
        self._ps_endpoints = "127.0.0.1:%s,127.0.0.1:%s" % (
            self._find_free_port(), self._find_free_port())
        self._python_interp = sys.executable

147 148 149 150 151
        self.temp_dir = tempfile.TemporaryDirectory()

    def tearDown(self):
        self.temp_dir.cleanup()

152
    def _find_free_port(self):
153

154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
        def __free_port():
            with closing(socket.socket(socket.AF_INET,
                                       socket.SOCK_STREAM)) as s:
                s.bind(('', 0))
                return s.getsockname()[1]

        while True:
            port = __free_port()
            if port not in self._port_set:
                self._port_set.add(port)
                return port

    def _run_cluster(self, model_file, envs):
        worker_endpoints = self._ps_endpoints.split(",")
        w0_ep, w1_ep = worker_endpoints
        #print("w0_ep:",w0_ep," w1_ep:",w1_ep)
        env0 = {
171
            "FLAGS_selected_gpus": "0",
172 173 174 175 176 177 178
            "PADDLE_TRAINER_ID": "0",
            "PADDLE_TRAINERS_NUM": "2",
            "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
            "PADDLE_CURRENT_ENDPOINT": w0_ep
        }

        env1 = {
179
            "FLAGS_selected_gpus": "1",
180 181 182 183 184 185 186 187 188 189 190
            "PADDLE_TRAINER_ID": "1",
            "PADDLE_TRAINERS_NUM": "2",
            "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
            "PADDLE_CURRENT_ENDPOINT": w1_ep
        }
        #update environment
        env0.update(envs)
        env1.update(envs)
        tr_cmd = "%s %s"
        tr0_cmd = tr_cmd % (self._python_interp, model_file)
        tr1_cmd = tr_cmd % (self._python_interp, model_file)
191 192 193 194
        path0 = os.path.join(self.temp_dir.name, "/tmp/tr0_err.log")
        path1 = os.path.join(self.temp_dir.name, "/tmp/tr1_err.log")
        tr0_pipe = open(path0, "wb")
        tr1_pipe = open(path1, "wb")
195 196 197 198 199
        #print(tr0_cmd)
        tr0_proc = subprocess.Popen(tr0_cmd.strip().split(),
                                    stdout=subprocess.PIPE,
                                    stderr=tr0_pipe,
                                    env=env0)
200

201 202 203 204
        tr1_proc = subprocess.Popen(tr0_cmd.strip().split(),
                                    stdout=subprocess.PIPE,
                                    stderr=tr1_pipe,
                                    env=env1)
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227

        tr0_out, tr0_err = tr0_proc.communicate()
        tr1_out, tr1_err = tr1_proc.communicate()
        sys.stderr.write('trainer 0 stderr: %s\n' % tr0_err)
        sys.stderr.write('trainer 1 stderr: %s\n' % tr1_err)
        # close trainer file
        tr0_pipe.close()
        tr1_pipe.close()
        return pickle.loads(tr0_out), pickle.loads(
            tr1_out), tr0_proc.pid, tr1_proc.pid

    def check_with_place(self,
                         model_file,
                         col_type,
                         check_error_log=False,
                         need_envs={}):
        required_envs = {
            "FLAGS_fraction_of_gpu_memory_to_use": "0.15",
            "FLAGS_eager_delete_tensor_gb": "0.0",
            "PATH": os.getenv("PATH"),
            "PYTHONPATH": os.getenv("PYTHONPATH", ""),
            "LD_LIBRARY_PATH": os.getenv("LD_LIBRARY_PATH", ""),
            "LD_PRELOAD": os.getenv("LD_PRELOAD", ""),
228
            "GLOG_v": "3",
229 230 231 232 233 234
            "NCCL_P2P_DISABLE": "1"
        }
        required_envs.update(need_envs)
        if check_error_log:
            required_envs["GLOG_v"] = "3"
            required_envs["GLOG_logtostderr"] = "1"
235 236
        tr0_out, tr1_out, pid0, pid1 = self._run_cluster(
            model_file, required_envs)
237 238 239 240 241 242
        np.random.seed(pid0)
        input1 = np.random.random((10, 1000))
        np.random.seed(pid1)
        input2 = np.random.random((10, 1000))
        if col_type == "allgather":
            need_result = np.vstack((input1, input2))
243 244
            np.testing.assert_allclose(tr0_out[0], need_result, rtol=1e-05)
            np.testing.assert_allclose(tr1_out[0], need_result, rtol=1e-05)
245 246
        elif col_type == "broadcast":
            need_result = input2
247 248
            np.testing.assert_allclose(tr0_out[0], need_result, rtol=1e-05)
            np.testing.assert_allclose(tr1_out[0], need_result, rtol=1e-05)
L
lilong12 已提交
249 250
        elif col_type == "reduce":
            need_result = input1 + input2
251
            np.testing.assert_allclose(tr1_out[0], need_result, rtol=1e-05)
L
lilong12 已提交
252 253 254 255
        elif col_type == "scatter":
            need_result = input2
            need_result1 = need_result[0:need_result.shape[0] // 2]
            need_result2 = need_result[need_result.shape[0] // 2:]
256 257
            np.testing.assert_allclose(tr0_out[0], need_result1, rtol=1e-05)
            np.testing.assert_allclose(tr1_out[0], need_result2, rtol=1e-05)
258 259
        elif col_type == "allreduce":
            need_result = input1 + input2
260 261 262 263 264 265 266 267
            np.testing.assert_allclose(tr0_out[0],
                                       need_result,
                                       rtol=1e-05,
                                       atol=1e-05)
            np.testing.assert_allclose(tr1_out[0],
                                       need_result,
                                       rtol=1e-05,
                                       atol=1e-05)
268 269 270 271
        elif col_type == "reduce_scatter":
            tmp = input1 + input2
            need_result1 = tmp[0:tmp.shape[0] // 2]
            need_result2 = tmp[tmp.shape[0] // 2:]
272 273 274 275 276 277 278 279
            np.testing.assert_allclose(tr0_out[0],
                                       need_result1,
                                       rtol=1e-05,
                                       atol=1e-05)
            np.testing.assert_allclose(tr1_out[0],
                                       need_result2,
                                       rtol=1e-05,
                                       atol=1e-05)
L
lilong12 已提交
280 281
        elif col_type == "sendrecv":
            need_result = input1
282 283 284 285
            np.testing.assert_allclose(tr1_out[0],
                                       need_result,
                                       rtol=1e-05,
                                       atol=1e-05)
L
lilong12 已提交
286 287 288
        elif col_type == "identity":
            need_result1 = input1
            need_result2 = input2
289 290
            np.testing.assert_allclose(tr0_out[0], need_result1, rtol=0, atol=0)
            np.testing.assert_allclose(tr1_out[0], need_result2, rtol=0, atol=0)
291 292 293 294 295 296 297 298
        elif col_type == "reduce_slicegather":
            slicesize = input1.shape[0] // 2
            tmp10 = input1[0:slicesize]
            tmp11 = input2[0:slicesize]
            need_result1 = np.concatenate((tmp10, tmp11), axis=1)
            tmp20 = input1[slicesize:]
            tmp21 = input2[slicesize:]
            need_result2 = np.concatenate((tmp20, tmp21), axis=1)
299 300
            np.testing.assert_allclose(tr0_out, need_result1, rtol=1e-05)
            np.testing.assert_allclose(tr1_out, need_result2, rtol=1e-05)
L
lilong12 已提交
301 302
        elif col_type == "concat":
            need_result = np.concatenate((input1, input2), axis=1)
303 304 305 306 307 308 309 310
            np.testing.assert_allclose(tr0_out[0],
                                       need_result,
                                       rtol=1e-05,
                                       atol=1e-05)
            np.testing.assert_allclose(tr1_out[0],
                                       need_result,
                                       rtol=1e-05,
                                       atol=1e-05)
L
lilong12 已提交
311 312 313
        elif col_type == "split":
            need_result1 = np.split(input1, 2, axis=1)[0]
            need_result2 = np.split(input2, 2, axis=1)[1]
314 315 316 317 318 319 320 321
            np.testing.assert_allclose(tr0_out[0],
                                       need_result1,
                                       rtol=1e-05,
                                       atol=1e-05)
            np.testing.assert_allclose(tr1_out[0],
                                       need_result2,
                                       rtol=1e-05,
                                       atol=1e-05)
322 323 324
        elif col_type == "sendrecv_array":
            need_result1 = np.array([[0, 1, 2]])
            need_result2 = np.array([[3, 4, 5]])
325 326 327 328 329 330 331 332
            np.testing.assert_allclose(tr1_out[0][0],
                                       need_result1,
                                       rtol=1e-05,
                                       atol=1e-05)
            np.testing.assert_allclose(tr1_out[0][1],
                                       need_result2,
                                       rtol=1e-05,
                                       atol=1e-05)
333 334
        else:
            pass