test_collective_api_base.py 23.5 KB
Newer Older
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import unittest
import time
import argparse
import os
import sys
import subprocess
import traceback
import functools
import pickle
25
import tempfile
26
from contextlib import closing
27
import paddle
28 29 30 31 32
import paddle.fluid as fluid
import paddle.fluid.unique_name as nameGen
from paddle.fluid import core


33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
def create_bool_test_data(shape=None, seed=None):
    if seed:
        np.random.seed(seed)
    data = np.random.choice([True, False], size=shape)
    return data


def create_float_test_data(shape=None, dtype=None, seed=None):
    if seed:
        np.random.seed(seed)
    data = np.random.random(shape).astype(dtype)
    return data


def create_int_test_data(shape=None, dtype=None, seed=None):
    if seed:
        np.random.seed(seed)
    data = np.random.randint(0, high=100, size=shape).astype(dtype)
    return data


def create_complex_test_data(shape=None, dtype=None, seed=None):
    if seed:
        np.random.seed(seed)
    data = np.random.random(shape).astype(dtype)
    data.imag = np.random.random(shape)
    return data


def create_pylist_test_data(shape=None, seed=None):
    if seed:
        np.random.seed(seed)
65 66
    # Generate random shape test case for xxx_object api
    shape = np.random.randint(0, high=100, size=(2)).tolist()
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
    data = np.random.random(shape).tolist()
    return data


def create_pydict_test_data(shape=None, seed=None):
    if seed:
        np.random.seed(seed)
    key = [i for i in range(0, shape[0])]
    value = np.random.random(shape).tolist()
    data = dict(zip(key, value))
    return data


def create_test_data(shape=None, dtype=None, seed=None):
    assert shape, "Shape should be specified"
    if dtype == "float32" or dtype == "float16" or dtype == "float64":
        return create_float_test_data(shape=shape, dtype=dtype, seed=seed)
    elif dtype == "bool":
        return create_bool_test_data(shape=shape, seed=seed)
    elif dtype == "int32" or dtype == "int64" or dtype == "int8" or dtype == "uint8":
        return create_int_test_data(shape=shape, dtype=dtype, seed=seed)
    elif dtype == "complex64" or dtype == "complex128":
        return create_complex_test_data(shape=shape, dtype=dtype, seed=seed)
    elif dtype == "pylist":
        return create_pylist_test_data(shape=shape, seed=seed)
    elif dtype == "pydict":
        return create_pydict_test_data(shape=shape, seed=seed)
    else:
        raise NotImplementedError("Unsupported dtype for creating test data.")


98
class TestCollectiveAPIRunnerBase(object):
99

100 101 102 103 104 105
    def get_model(self,
                  train_prog,
                  startup_prog,
                  rank,
                  indata=None,
                  dtype=None):
106 107 108 109 110 111 112 113 114 115
        raise NotImplementedError(
            "get model should be implemented by child class.")

    def run_trainer(self, args):
        train_prog = fluid.Program()
        startup_prog = fluid.Program()
        endpoints = args["endpoints"].split(",")
        rank = args["trainerid"]
        current_endpoint = args["currentendpoint"]
        nranks = 2
116
        paddle.distributed.init_parallel_env()
117 118 119 120
        if args['backend'] == 'nccl':
            device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
            place = fluid.CUDAPlace(
                device_id)  #if args.use_gpu else fluid.CPUPlace()
121 122 123
        elif args['backend'] == 'bkcl':
            device_id = int(os.getenv("FLAGS_selected_xpus", "0"))
            place = fluid.XPUPlace(device_id)
124 125
        else:
            place = fluid.CPUPlace()
126 127 128
        indata = create_test_data(shape=(10, 1000),
                                  dtype=args["dtype"],
                                  seed=os.getpid())
L
lilong12 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141
        if args['static_mode']:
            result = self.get_model(train_prog, startup_prog, rank)
            exe = fluid.Executor(place)
            exe.run(startup_prog)
            fetch_list = []
            for elem in result:
                fetch_list.append(elem.name)
            out = exe.run(train_prog,
                          feed={'tindata': indata},
                          fetch_list=fetch_list)
        else:
            out = self.get_model(train_prog, startup_prog, rank, indata)
            #print(out, sys.stderr)
T
tianshuo78520a 已提交
142
        sys.stdout.buffer.write(pickle.dumps(out))
143 144 145 146 147 148 149 150 151 152 153 154


def runtime_main(test_class, col_type):
    args = {}
    model = test_class()
    args["trainerid"] = int(os.getenv("PADDLE_TRAINER_ID"))
    args["trainernum"] = int(os.getenv("PADDLE_TRAINERS_NUM"))
    args["endpoints"] = os.getenv('PADDLE_TRAINER_ENDPOINTS')
    args["currentendpoint"] = os.getenv("PADDLE_CURRENT_ENDPOINT")
    args["col_type"] = col_type
    args["backend"] = os.getenv("BACKEND")
    args["path_id"] = int(os.getenv("PATH_ID"))
L
lilong12 已提交
155
    args["static_mode"] = int(os.getenv("STATIC_MODE"))
156
    args["dtype"] = os.getenv("DTYPE")
157 158 159 160 161 162 163 164 165
    model.run_trainer(args)


import paddle.compat as cpt
import socket
from contextlib import closing


class TestDistBase(unittest.TestCase):
166

167 168 169 170 171 172 173
    def setUp(self):
        self._port_set = set()
        self._trainers = 2
        self._ps_endpoints = "127.0.0.1:%s,127.0.0.1:%s" % (
            self._find_free_port(), self._find_free_port())
        self._python_interp = sys.executable

174 175 176 177 178
        self.temp_dir = tempfile.TemporaryDirectory()

    def tearDown(self):
        self.temp_dir.cleanup()

179
    def _find_free_port(self):
180

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
        def __free_port():
            with closing(socket.socket(socket.AF_INET,
                                       socket.SOCK_STREAM)) as s:
                s.bind(('', 0))
                return s.getsockname()[1]

        while True:
            port = __free_port()
            if port not in self._port_set:
                self._port_set.add(port)
                return port

    def _run_cluster(self, model_file, envs):
        worker_endpoints = self._ps_endpoints.split(",")
        w0_ep, w1_ep = worker_endpoints
        #print("w0_ep:",w0_ep," w1_ep:",w1_ep)
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
        if core.is_compiled_with_cuda():
            env0 = {
                "FLAGS_selected_gpus": "0",
                "PADDLE_TRAINER_ID": "0",
                "PADDLE_TRAINERS_NUM": "2",
                "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
                "PADDLE_CURRENT_ENDPOINT": w0_ep
            }

            env1 = {
                "FLAGS_selected_gpus": "1",
                "PADDLE_TRAINER_ID": "1",
                "PADDLE_TRAINERS_NUM": "2",
                "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
                "PADDLE_CURRENT_ENDPOINT": w1_ep
            }
        elif core.is_compiled_with_xpu():
            env0 = {
                "FLAGS_selected_xpus": "0",
                "PADDLE_TRAINER_ID": "0",
                "PADDLE_TRAINERS_NUM": "2",
                "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
                "PADDLE_CURRENT_ENDPOINT": w0_ep
            }

            env1 = {
                "FLAGS_selected_xpus": "1",
                "PADDLE_TRAINER_ID": "1",
                "PADDLE_TRAINERS_NUM": "2",
                "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
                "PADDLE_CURRENT_ENDPOINT": w1_ep
            }
229 230 231
        #update environment
        env0.update(envs)
        env1.update(envs)
232 233 234 235
        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            tr_cmd = "%s -m coverage run --branch -p %s"
        else:
            tr_cmd = "%s %s"
236 237
        tr0_cmd = tr_cmd % (self._python_interp, model_file)
        tr1_cmd = tr_cmd % (self._python_interp, model_file)
238 239 240 241 242 243
        path0 = os.path.join(self.temp_dir.name,
                             "/tmp/tr0_err_%d.log" % os.getpid())
        path1 = os.path.join(self.temp_dir.name,
                             "/tmp/tr1_err_%d.log" % os.getpid())
        tr0_pipe = open(path0, "w")
        tr1_pipe = open(path1, "w")
244 245 246 247 248 249 250 251 252 253
        #print(tr0_cmd)
        tr0_proc = subprocess.Popen(tr0_cmd.strip().split(),
                                    stdout=subprocess.PIPE,
                                    stderr=tr0_pipe,
                                    env=env0)

        tr1_proc = subprocess.Popen(tr0_cmd.strip().split(),
                                    stdout=subprocess.PIPE,
                                    stderr=tr1_pipe,
                                    env=env1)
254 255 256 257 258 259 260 261

        tr0_out, tr0_err = tr0_proc.communicate()
        tr1_out, tr1_err = tr1_proc.communicate()
        sys.stderr.write('trainer 0 stderr: %s\n' % tr0_err)
        sys.stderr.write('trainer 1 stderr: %s\n' % tr1_err)
        # close trainer file
        tr0_pipe.close()
        tr1_pipe.close()
262
        with open(path0, "r") as f:
263
            sys.stderr.write('trainer 0 stderr file: %s\n' % f.read())
264
        with open(path1, "r") as f:
265
            sys.stderr.write('trainer 1 stderr file: %s\n' % f.read())
266 267 268 269 270 271 272 273
        return pickle.loads(tr0_out), pickle.loads(
            tr1_out), tr0_proc.pid, tr1_proc.pid

    def check_with_place(self,
                         model_file,
                         col_type,
                         backend="nccl",
                         path_id="0",
L
lilong12 已提交
274
                         static_mode="1",
275
                         check_error_log=False,
276
                         need_envs={},
277 278
                         eager_mode=True,
                         dtype=None):
279 280 281 282
        if backend == "nccl" or backend == "bkcl":
            with_gloo = '0'
        else:
            with_gloo = '1'
283
        required_envs = os.environ.copy()
284
        dtype = "float32" if dtype is None else dtype
285
        additional_envs = {
286
            "NCCL_P2P_DISABLE": "1",
L
lilong12 已提交
287
            "STATIC_MODE": static_mode,
L
lilong12 已提交
288
            "PADDLE_WITH_GLOO": with_gloo,
289
            "PADDLE_DISTRI_BACKEND": backend,
290
            "BACKEND": backend,
291 292
            "PATH_ID": path_id,
            "DTYPE": dtype
293
        }
294
        required_envs.update(additional_envs)
295 296 297 298
        required_envs.update(need_envs)
        if check_error_log:
            required_envs["GLOG_v"] = "3"
            required_envs["GLOG_logtostderr"] = "1"
299
            required_envs["GLOO_LOG_LEVEL"] = "TRACE"
300

301 302 303 304
        if os.getenv('NVIDIA_TF32_OVERRIDE', '') is not None:
            required_envs['NVIDIA_TF32_OVERRIDE'] = os.getenv(
                'NVIDIA_TF32_OVERRIDE', '')

305 306
        if eager_mode:
            required_envs["FLAGS_enable_eager_mode"] = "%d" % 1
307 308
        else:
            required_envs["FLAGS_enable_eager_mode"] = "%d" % 0
309

310 311
        tr0_out, tr1_out, pid0, pid1 = self._run_cluster(
            model_file, required_envs)
312 313
        input1 = create_test_data(shape=(10, 1000), dtype=dtype, seed=pid0)
        input2 = create_test_data(shape=(10, 1000), dtype=dtype, seed=pid1)
314 315 316 317
        if col_type == "allgather":
            need_result = np.vstack((input1, input2))
            tr_out0 = np.vstack((tr0_out[0], tr0_out[1]))
            tr_out1 = np.vstack((tr1_out[0], tr1_out[1]))
318 319
            np.testing.assert_allclose(tr_out0, need_result, rtol=1e-05)
            np.testing.assert_allclose(tr_out1, need_result, rtol=1e-05)
320 321 322 323
        if col_type == "allgather_object":
            need_result = [input1, input2]
            self.assertEqual(need_result, tr0_out)
            self.assertEqual(need_result, tr1_out)
324 325
        elif col_type == "broadcast":
            need_result = input2
326 327
            np.testing.assert_allclose(tr0_out[0], need_result, rtol=1e-05)
            np.testing.assert_allclose(tr1_out[0], need_result, rtol=1e-05)
328 329
        elif col_type == "reduce":
            need_result = input1 + input2
330
            np.testing.assert_allclose(tr0_out[0], need_result, rtol=1e-05)
331 332 333 334
        elif col_type == "scatter":
            need_result = input2
            need_result1 = need_result[0:need_result.shape[0] // 2]
            need_result2 = need_result[need_result.shape[0] // 2:]
335 336
            np.testing.assert_allclose(tr0_out[0], need_result1, rtol=1e-05)
            np.testing.assert_allclose(tr1_out[0], need_result2, rtol=1e-05)
337 338 339 340 341 342
        elif col_type == "reduce_scatter":
            need_result = input1 + input2
            need_result1 = need_result[0:need_result.shape[0] // 2]
            need_result2 = need_result[need_result.shape[0] // 2:]
            np.testing.assert_allclose(tr0_out[0], need_result1, rtol=1e-05)
            np.testing.assert_allclose(tr1_out[0], need_result2, rtol=1e-05)
343 344
        elif col_type == "allreduce":
            need_result = input1 + input2
345 346 347 348 349 350 351 352
            np.testing.assert_allclose(tr0_out[0],
                                       need_result,
                                       rtol=1e-05,
                                       atol=1e-05)
            np.testing.assert_allclose(tr1_out[0],
                                       need_result,
                                       rtol=1e-05,
                                       atol=1e-05)
353 354 355
        elif col_type == "parallel_embedding":
            result_data = tr0_out[0]
            np.random.seed(2020)
356
            need_result = np.random.rand(12, 8)
357 358 359
            for i in range(result_data.shape[0]):
                for j in range(result_data.shape[1]):
                    data = result_data[i][j]
360 361 362
                    assert np.allclose(tr0_out[1][i][j],
                                       need_result[data],
                                       atol=1e-08)
363 364 365 366 367
        elif col_type == "row_parallel_linear":
            result_data = tr0_out[0]
            np.random.seed(2020)
            weight = np.random.rand(1000, 16)
            need_result = np.matmul(input1, weight)
368 369 370 371
            np.testing.assert_allclose(result_data,
                                       need_result,
                                       rtol=1e-05,
                                       atol=1e-05)
372 373 374 375 376
        elif col_type == "column_parallel_linear":
            result_data = tr0_out[0]
            np.random.seed(2020)
            weight = np.random.rand(1000, 16)
            need_result = np.matmul(input1, weight)
377 378 379 380
            np.testing.assert_allclose(result_data,
                                       need_result,
                                       rtol=1e-05,
                                       atol=1e-05)
L
lilong12 已提交
381 382 383 384 385 386 387
        elif col_type == "alltoall":
            need_result1 = np.vstack((input1[0:input1.shape[0] // 2, :],
                                      input2[0:input2.shape[0] // 2, :]))
            need_result2 = np.vstack((input1[input1.shape[0] // 2:, :],
                                      input2[input2.shape[0] // 2:, :]))
            tr0_out = np.vstack(tr0_out)
            tr1_out = np.vstack(tr1_out)
388 389 390 391 392 393 394 395
            np.testing.assert_allclose(tr0_out,
                                       need_result1,
                                       rtol=1e-05,
                                       atol=1e-05)
            np.testing.assert_allclose(tr1_out,
                                       need_result2,
                                       rtol=1e-05,
                                       atol=1e-05)
L
lilong12 已提交
396 397
        elif col_type == "sendrecv":
            result_data = tr1_out[0]
398 399 400 401
            np.testing.assert_allclose(input1,
                                       result_data,
                                       rtol=1e-05,
                                       atol=1e-05)
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
        elif col_type == "global_gather":
            in_feat = 2
            n_expert = 2
            world_size = 2
            tot_expert = n_expert * world_size

            np.random.seed(pid0)
            local_expert_count1 = np.random.randint(
                1, 4, size=tot_expert).astype("int")
            expert_ptr1 = np.ones(tot_expert, dtype=np.int32)
            expert_ptr1[0] = 0
            for i in range(1, tot_expert):
                expert_ptr1[i] = expert_ptr1[i - 1] + local_expert_count1[i - 1]

            np.random.seed(pid1)
            local_expert_count2 = np.random.randint(
                1, 4, size=tot_expert).astype("int")
            expert_ptr2 = np.ones(tot_expert, dtype=np.int32)
            expert_ptr2[0] = 0
            for i in range(1, tot_expert):
                expert_ptr2[i] = expert_ptr2[i - 1] + local_expert_count2[i - 1]

            global_expert_count1 = np.zeros(tot_expert).astype("int")
            global_expert_count2 = np.zeros(tot_expert).astype("int")
            global_expert_count1[0:n_expert] = local_expert_count1[0:n_expert]
            global_expert_count1[n_expert:] = local_expert_count2[0:n_expert]
            global_expert_count2[0:n_expert] = local_expert_count1[n_expert:]
            global_expert_count2[n_expert:] = local_expert_count2[n_expert:]

            np.random.seed(pid0)
            fwd_expert_count = sum(global_expert_count1).astype("int")
            local_input_buf1 = np.random.rand(fwd_expert_count,
                                              in_feat).astype("float32")
            np.random.seed(pid1)
            fwd_expert_count = sum(global_expert_count2).astype("int")
            local_input_buf2 = np.random.rand(fwd_expert_count,
                                              in_feat).astype("float32")
            output1 = [[], [], [], []]
            output2 = [[], [], [], []]
            send_ptr1 = 0
            send_ptr2 = 0

            for i in range(n_expert):
                for j in range(world_size):
                    idx = j * n_expert + i
                    if j == 0:
                        output1_part1 = local_input_buf1[send_ptr1: \
                            send_ptr1 + global_expert_count1[idx], :]
                        output1_part2 = local_input_buf2[send_ptr2: \
                            send_ptr2 + global_expert_count2[idx], :]
                        output1[i].extend(output1_part1)
                        output1[i + n_expert].extend(output1_part2)
                    else:
                        output2_part1 = local_input_buf1[send_ptr1: \
                            send_ptr1 + global_expert_count1[idx]]
                        output2_part2 = local_input_buf2[send_ptr2: \
                            send_ptr2 + global_expert_count2[idx]]
                        output2[i].extend(output2_part1)
                        output2[i + n_expert].extend(output2_part2)
                    send_ptr1 = send_ptr1 + global_expert_count1[idx]
                    send_ptr2 = send_ptr2 + global_expert_count2[idx]
            result1 = []
            result2 = []
            for i in range(tot_expert):
                for arr in output1[i]:
                    if arr == []:
                        continue
                    result1.append(arr)
            for i in range(tot_expert):
                for arr in output2[i]:
                    if arr == []:
                        continue
                    result2.append(arr)
            if result1 == []:
                output1 = np.array([])
            else:
478 479
                output1 = np.concatenate(result1, axis=0).reshape(
                    sum(local_expert_count1), in_feat)
480 481 482
            if result2 == []:
                output2 = np.array([])
            else:
483 484
                output2 = np.concatenate(result2, axis=0).reshape(
                    sum(local_expert_count2), in_feat)
485 486 487 488 489 490 491

            if tr0_out[0] is None or tr0_out[0].shape[0] == 0:
                tr0_out[0] = np.array([])

            if tr1_out[0] is None or tr1_out[0].shape[0] == 0:
                tr1_out[0] = np.array([])

492 493 494 495 496 497 498 499
            np.testing.assert_allclose(tr0_out[0],
                                       output1,
                                       rtol=1e-05,
                                       atol=1e-05)
            np.testing.assert_allclose(tr1_out[0],
                                       output2,
                                       rtol=1e-05,
                                       atol=1e-05)
500
            if static_mode == 0:
501 502 503 504 505 506 507 508
                np.testing.assert_allclose(tr0_out[1],
                                           2 * local_input_buf1,
                                           rtol=1e-05,
                                           atol=1e-05)
                np.testing.assert_allclose(tr1_out[1],
                                           2 * local_input_buf2,
                                           rtol=1e-05,
                                           atol=1e-05)
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560

        elif col_type == "global_scatter":
            np.random.seed(pid0)
            local_expert_count1 = np.random.randint(1, 4, size=4).astype("int")
            fwd_expert_count = sum(local_expert_count1)
            local_input_buf1 = np.random.rand(fwd_expert_count,
                                              2).astype("float32")
            expert_ptr1 = np.ones(4, dtype=np.int32)
            expert_ptr1[0] = 0
            for i in range(1, 4):
                expert_ptr1[i] = expert_ptr1[i - 1] + local_expert_count1[i - 1]
            np.random.seed(pid1)
            local_expert_count2 = np.random.randint(1, 4, size=4).astype("int")
            fwd_expert_count = sum(local_expert_count2)
            local_input_buf2 = np.random.rand(fwd_expert_count,
                                              2).astype("float32")
            expert_ptr2 = np.ones(4, dtype=np.int32)
            expert_ptr2[0] = 0
            for i in range(1, 4):
                expert_ptr2[i] = expert_ptr2[i - 1] + local_expert_count2[i - 1]

            output1 = []
            output2 = []
            for i in range(2):
                for j in range(2):
                    idx = j * 2 + i
                    if j == 0:
                        # send data to 0 card
                        output1.append(local_input_buf1[expert_ptr1[idx]: \
                            expert_ptr1[idx]+local_expert_count1[idx]])
                        output1.append(local_input_buf2[expert_ptr2[idx]:\
                            expert_ptr2[idx]+local_expert_count2[idx]])
                    else:
                        output2.append(local_input_buf1[expert_ptr1[idx]: \
                            expert_ptr1[idx]+local_expert_count1[idx]])
                        output2.append(local_input_buf2[expert_ptr2[idx]:\
                            expert_ptr2[idx]+local_expert_count2[idx]])
            if output1 == []:
                output1 = np.array([])
            else:
                output1 = np.concatenate(output1)
            if output2 == []:
                output2 = np.array([])
            else:
                output2 = np.concatenate(output2)

            if tr0_out[0] is None or tr0_out[0].shape[0] == 0:
                tr0_out[0] = np.array([])

            if tr1_out[0] is None or tr1_out[0].shape[0] == 0:
                tr1_out[0] = np.array([])

561 562 563 564 565 566 567 568
            np.testing.assert_allclose(tr0_out[0],
                                       output1,
                                       rtol=1e-05,
                                       atol=1e-05)
            np.testing.assert_allclose(tr1_out[0],
                                       output2,
                                       rtol=1e-05,
                                       atol=1e-05)
569
            if static_mode == 0:
570 571 572 573 574 575 576 577
                np.testing.assert_allclose(tr0_out[1],
                                           2 * local_input_buf1,
                                           rtol=1e-05,
                                           atol=1e-05)
                np.testing.assert_allclose(tr1_out[1],
                                           2 * local_input_buf2,
                                           rtol=1e-05,
                                           atol=1e-05)
578 579
        else:
            pass