test_bicubic_interp_op.py 17.6 KB
Newer Older
X
xiaoting 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np
from op_test import OpTest
import paddle.fluid.core as core
import paddle.fluid as fluid
import paddle
from paddle.fluid import Program, program_guard
L
Li Fuchen 已提交
22
from paddle.nn.functional import interpolate
X
xiaoting 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88


def cubic_1(x, a):
    return ((a + 2) * x - (a + 3)) * x * x + 1


def cubic_2(x, a):
    return ((a * x - 5 * a) * x + 8 * a) * x - 4 * a


def cubic_interp1d(x0, x1, x2, x3, t):
    param = [0, 0, 0, 0]
    a = -0.75
    x_1 = t
    x_2 = 1.0 - t
    param[0] = cubic_2(x_1 + 1.0, a)
    param[1] = cubic_1(x_1, a)
    param[2] = cubic_1(x_2, a)
    param[3] = cubic_2(x_2 + 1.0, a)
    return x0 * param[0] + x1 * param[1] + x2 * param[2] + x3 * param[3]


def value_bound(input, w, h, x, y):
    access_x = int(max(min(x, w - 1), 0))
    access_y = int(max(min(y, h - 1), 0))
    return input[:, :, access_y, access_x]


def bicubic_interp_np(input,
                      out_h,
                      out_w,
                      out_size=None,
                      actual_shape=None,
                      align_corners=True,
                      data_layout='kNCHW'):
    """trilinear interpolation implement in shape [N, C, H, W]"""
    if data_layout == "NHWC":
        input = np.transpose(input, (0, 3, 1, 2))  # NHWC => NCHW
    if out_size is not None:
        out_h = out_size[0]
        out_w = out_size[1]
    if actual_shape is not None:
        out_h = actual_shape[0]
        out_w = actual_shape[1]
    batch_size, channel, in_h, in_w = input.shape

    ratio_h = ratio_w = 0.0
    if out_h > 1:
        if (align_corners):
            ratio_h = (in_h - 1.0) / (out_h - 1.0)
        else:
            ratio_h = 1.0 * in_h / out_h

    if out_w > 1:
        if (align_corners):
            ratio_w = (in_w - 1.0) / (out_w - 1.0)
        else:
            ratio_w = 1.0 * in_w / out_w

    out = np.zeros((batch_size, channel, out_h, out_w))

    for k in range(out_h):
        if (align_corners):
            h = ratio_h * k
        else:
            h = ratio_h * (k + 0.5) - 0.5
89
        input_y = np.floor(h)
X
xiaoting 已提交
90 91 92 93 94 95
        y_t = h - input_y
        for l in range(out_w):
            if (align_corners):
                w = ratio_w * l
            else:
                w = ratio_w * (l + 0.5) - 0.5
96
            input_x = np.floor(w)
X
xiaoting 已提交
97 98 99 100 101 102 103 104 105 106 107 108 109 110
            x_t = w - input_x
            for i in range(batch_size):
                for j in range(channel):
                    coefficients = [0, 0, 0, 0]
                    for ii in range(4):
                        access_x_0 = int(max(min(input_x - 1, in_w - 1), 0))
                        access_x_1 = int(max(min(input_x + 0, in_w - 1), 0))
                        access_x_2 = int(max(min(input_x + 1, in_w - 1), 0))
                        access_x_3 = int(max(min(input_x + 2, in_w - 1), 0))
                        access_y = int(max(min(input_y - 1 + ii, in_h - 1), 0))

                        coefficients[ii] = cubic_interp1d(
                            input[i, j, access_y, access_x_0],
                            input[i, j, access_y, access_x_1],
111 112 113 114 115 116 117
                            input[i, j, access_y,
                                  access_x_2], input[i, j, access_y,
                                                     access_x_3], x_t)
                    out[i, j, k,
                        l] = cubic_interp1d(coefficients[0], coefficients[1],
                                            coefficients[2], coefficients[3],
                                            y_t)
X
xiaoting 已提交
118 119 120 121 122 123
    if data_layout == "NHWC":
        out = np.transpose(out, (0, 2, 3, 1))  # NCHW => NHWC
    return out.astype(input.dtype)


class TestBicubicInterpOp(OpTest):
124

X
xiaoting 已提交
125 126 127 128 129 130
    def setUp(self):
        self.out_size = None
        self.actual_shape = None
        self.data_layout = 'NCHW'
        self.init_test_case()
        self.op_type = "bicubic_interp"
131 132 133
        # NOTE(dev): some AsDispensible input is not used under imperative mode.
        # Skip check_eager while found them in Inputs.
        self.check_eager = True
X
xiaoting 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
        input_np = np.random.random(self.input_shape).astype("float64")

        if self.data_layout == "NCHW":
            in_h = self.input_shape[2]
            in_w = self.input_shape[3]
        else:
            in_h = self.input_shape[1]
            in_w = self.input_shape[2]

        if self.scale > 0:
            out_h = int(in_h * self.scale)
            out_w = int(in_w * self.scale)
        else:
            out_h = self.out_h
            out_w = self.out_w

        output_np = bicubic_interp_np(input_np, out_h, out_w, self.out_size,
                                      self.actual_shape, self.align_corners,
                                      self.data_layout)
        self.inputs = {'X': input_np}
        if self.out_size is not None:
            self.inputs['OutSize'] = self.out_size
156
            self.check_eager = False
X
xiaoting 已提交
157 158
        if self.actual_shape is not None:
            self.inputs['OutSize'] = self.actual_shape
159
            self.check_eager = False
X
xiaoting 已提交
160 161 162 163 164 165 166 167 168 169 170 171

        self.attrs = {
            'out_h': self.out_h,
            'out_w': self.out_w,
            'scale': self.scale,
            'interp_method': self.interp_method,
            'align_corners': self.align_corners,
            'data_layout': self.data_layout
        }
        self.outputs = {'Out': output_np}

    def test_check_output(self):
172
        self.check_output(check_eager=self.check_eager)
X
xiaoting 已提交
173 174

    def test_check_grad(self):
175 176 177 178
        self.check_grad(['X'],
                        'Out',
                        in_place=True,
                        check_eager=self.check_eager)
X
xiaoting 已提交
179 180 181 182 183 184 185 186 187 188 189 190

    def init_test_case(self):
        self.interp_method = 'bicubic'
        self.input_shape = [2, 3, 5, 5]
        self.out_h = 2
        self.out_w = 2
        self.scale = 0.
        self.out_size = np.array([3, 3]).astype("int32")
        self.align_corners = True


class TestBicubicInterpCase1(TestBicubicInterpOp):
191

X
xiaoting 已提交
192 193 194 195 196 197 198 199 200 201
    def init_test_case(self):
        self.interp_method = 'bicubic'
        self.input_shape = [4, 1, 7, 8]
        self.out_h = 1
        self.out_w = 1
        self.scale = 0.
        self.align_corners = True


class TestBicubicInterpCase2(TestBicubicInterpOp):
202

X
xiaoting 已提交
203 204 205 206 207 208 209 210 211 212
    def init_test_case(self):
        self.interp_method = 'bicubic'
        self.input_shape = [3, 3, 9, 6]
        self.out_h = 10
        self.out_w = 8
        self.scale = 0.
        self.align_corners = True


class TestBicubicInterpCase3(TestBicubicInterpOp):
213

X
xiaoting 已提交
214 215 216 217 218 219 220 221 222 223
    def init_test_case(self):
        self.interp_method = 'bicubic'
        self.input_shape = [1, 1, 32, 64]
        self.out_h = 64
        self.out_w = 32
        self.scale = 0.
        self.align_corners = False


class TestBicubicInterpCase4(TestBicubicInterpOp):
224

X
xiaoting 已提交
225 226 227 228 229 230 231 232 233 234 235
    def init_test_case(self):
        self.interp_method = 'bicubic'
        self.input_shape = [4, 1, 7, 8]
        self.out_h = 1
        self.out_w = 1
        self.scale = 0.
        self.out_size = np.array([2, 2]).astype("int32")
        self.align_corners = True


class TestBicubicInterpCase5(TestBicubicInterpOp):
236

X
xiaoting 已提交
237 238 239 240 241 242 243 244 245 246 247
    def init_test_case(self):
        self.interp_method = 'bicubic'
        self.input_shape = [3, 3, 9, 6]
        self.out_h = 11
        self.out_w = 11
        self.scale = 0.
        self.out_size = np.array([6, 4]).astype("int32")
        self.align_corners = False


class TestBicubicInterpCase6(TestBicubicInterpOp):
248

X
xiaoting 已提交
249 250 251 252 253 254 255 256 257 258 259
    def init_test_case(self):
        self.interp_method = 'bicubic'
        self.input_shape = [1, 1, 32, 64]
        self.out_h = 64
        self.out_w = 32
        self.scale = 0
        self.out_size = np.array([64, 32]).astype("int32")
        self.align_corners = False


class TestBicubicInterpSame(TestBicubicInterpOp):
260

X
xiaoting 已提交
261 262 263 264 265 266 267 268 269 270
    def init_test_case(self):
        self.interp_method = 'bicubic'
        self.input_shape = [2, 3, 32, 64]
        self.out_h = 32
        self.out_w = 64
        self.scale = 0.
        self.align_corners = True


class TestBicubicInterpDataLayout(TestBicubicInterpOp):
271

X
xiaoting 已提交
272 273 274 275 276 277 278 279 280 281 282 283
    def init_test_case(self):
        self.interp_method = 'bicubic'
        self.input_shape = [2, 5, 5, 3]
        self.out_h = 2
        self.out_w = 2
        self.scale = 0.
        self.out_size = np.array([3, 3]).astype("int32")
        self.align_corners = True
        self.data_layout = "NHWC"


class TestBicubicInterpOpAPI(unittest.TestCase):
284

X
xiaoting 已提交
285
    def test_case(self):
286
        np.random.seed(200)
X
xiaoting 已提交
287 288 289 290 291 292 293 294
        x_data = np.random.random((2, 3, 6, 6)).astype("float32")
        dim_data = np.array([12]).astype("int32")
        shape_data = np.array([12, 12]).astype("int32")
        actual_size_data = np.array([12, 12]).astype("int32")
        scale_data = np.array([2.0]).astype("float32")

        prog = fluid.Program()
        startup_prog = fluid.Program()
295 296
        place = fluid.CUDAPlace(
            0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace()
X
xiaoting 已提交
297 298 299 300 301 302

        with fluid.program_guard(prog, startup_prog):

            x = fluid.data(name="x", shape=[2, 3, 6, 6], dtype="float32")

            dim = fluid.data(name="dim", shape=[1], dtype="int32")
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
            shape_tensor = fluid.data(name="shape_tensor",
                                      shape=[2],
                                      dtype="int32")
            actual_size = fluid.data(name="actual_size",
                                     shape=[2],
                                     dtype="int32")
            scale_tensor = fluid.data(name="scale_tensor",
                                      shape=[1],
                                      dtype="float32")

            out1 = interpolate(x,
                               size=[12, 12],
                               mode='bicubic',
                               align_corners=False)
            out2 = interpolate(x,
                               size=[12, dim],
                               mode='bicubic',
                               align_corners=False)
            out3 = interpolate(x,
                               size=shape_tensor,
                               mode='bicubic',
                               align_corners=False)
            out4 = interpolate(x,
                               size=[12, 12],
                               mode='bicubic',
                               align_corners=False)
            out5 = interpolate(x,
                               scale_factor=scale_tensor,
                               mode='bicubic',
                               align_corners=False)
X
xiaoting 已提交
333 334 335 336 337 338 339 340 341 342 343 344 345 346

            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            results = exe.run(fluid.default_main_program(),
                              feed={
                                  "x": x_data,
                                  "dim": dim_data,
                                  "shape_tensor": shape_data,
                                  "actual_size": actual_size_data,
                                  "scale_tensor": scale_data
                              },
                              fetch_list=[out1, out2, out3, out4, out5],
                              return_numpy=True)

347 348 349 350
            expect_res = bicubic_interp_np(x_data,
                                           out_h=12,
                                           out_w=12,
                                           align_corners=False)
X
xiaoting 已提交
351
            for res in results:
352
                np.testing.assert_allclose(res, expect_res, rtol=1e-05)
X
xiaoting 已提交
353 354 355

        with fluid.dygraph.guard():
            x = fluid.dygraph.to_variable(x_data)
356 357 358 359
            interp = interpolate(x,
                                 size=[12, 12],
                                 mode='bicubic',
                                 align_corners=False)
X
xiaoting 已提交
360
            dy_result = interp.numpy()
361 362 363 364
            expect = bicubic_interp_np(x_data,
                                       out_h=12,
                                       out_w=12,
                                       align_corners=False)
365
            np.testing.assert_allclose(dy_result, expect, rtol=1e-05)
X
xiaoting 已提交
366 367 368


class TestBicubicOpError(unittest.TestCase):
369

X
xiaoting 已提交
370 371 372
    def test_errors(self):
        with program_guard(Program(), Program()):
            # the input of interpoalte must be Variable.
373 374
            x1 = fluid.create_lod_tensor(np.array([-1, 3, 5, 5]),
                                         [[1, 1, 1, 1]], fluid.CPUPlace())
X
xiaoting 已提交
375 376 377 378 379 380
            self.assertRaises(TypeError, interpolate, x1)

            def test_mode_type():
                # mode must be "BILINEAR" "TRILINEAR" "NEAREST" "BICUBIC"
                x = fluid.data(name="x", shape=[2, 3, 6, 6], dtype="float32")

381 382 383 384
                out = interpolate(x,
                                  size=[12, 12],
                                  mode='UNKONWN',
                                  align_corners=False)
X
xiaoting 已提交
385 386 387

            def test_input_shape():
                x = fluid.data(name="x", shape=[2], dtype="float32")
388 389 390 391
                out = interpolate(x,
                                  size=[12, 12],
                                  mode='BICUBIC',
                                  align_corners=False)
X
xiaoting 已提交
392 393 394

            def test_align_corcers():
                x = fluid.data(name="x", shape=[2, 3, 6, 6], dtype="float32")
395
                interpolate(x, size=[12, 12], mode='BICUBIC', align_corners=3)
X
xiaoting 已提交
396 397 398

            def test_out_shape():
                x = fluid.data(name="x", shape=[2, 3, 6, 6], dtype="float32")
399 400 401 402
                out = interpolate(x,
                                  size=[12],
                                  mode='bicubic',
                                  align_corners=False)
X
xiaoting 已提交
403 404 405

            def test_attr_data_format():
                # for 5-D input, data_format only can be NCDHW or NDHWC
406 407 408 409 410 411 412
                input = fluid.data(name="input",
                                   shape=[2, 3, 6, 9, 4],
                                   dtype="float32")
                out = interpolate(input,
                                  size=[4, 8, 4, 5],
                                  mode='trilinear',
                                  data_format='NHWC')
X
xiaoting 已提交
413 414 415

            def test_actual_shape():
                # the actual_shape  must be Variable.
416 417 418 419 420 421
                x = fluid.create_lod_tensor(np.array([-1, 3, 5, 5]),
                                            [[1, 1, 1, 1]], fluid.CPUPlace())
                out = interpolate(x,
                                  size=[12, 12],
                                  mode='BICUBIC',
                                  align_corners=False)
X
xiaoting 已提交
422 423 424 425

            def test_scale_value():
                # the scale must be greater than zero.
                x = fluid.data(name="x", shape=[2, 3, 6, 6], dtype="float32")
426 427 428 429 430
                out = interpolate(x,
                                  size=None,
                                  mode='BICUBIC',
                                  align_corners=False,
                                  scale_factor=-2.0)
X
xiaoting 已提交
431 432 433

            def test_attr_5D_input():
                # for 5-D input, data_format only can be NCDHW or NDHWC
434 435 436 437 438 439 440
                input = fluid.data(name="input",
                                   shape=[2, 3, 6, 9, 4],
                                   dtype="float32")
                out = interpolate(input,
                                  size=[4, 8, 4, 5],
                                  mode='trilinear',
                                  data_format='NDHWC')
X
xiaoting 已提交
441 442 443 444

            def test_scale_type():
                # the scale must be greater than zero.
                x = fluid.data(name="x", shape=[2, 3, 6, 6], dtype="float32")
445 446 447 448 449 450 451 452
                scale = fluid.create_lod_tensor(np.array([-1, 3, 5,
                                                          5]), [[1, 1, 1, 1]],
                                                fluid.CPUPlace())
                out = interpolate(x,
                                  size=None,
                                  mode='bicubic',
                                  align_corners=False,
                                  scale_factor=scale)
X
xiaoting 已提交
453 454 455

            def test_align_mode():
                x = fluid.data(name="x", shape=[2, 3, 6, 6], dtype="float32")
456 457 458 459 460 461
                out = interpolate(x,
                                  size=None,
                                  mode='nearest',
                                  align_corners=False,
                                  align_mode=2,
                                  scale_factor=1.0)
X
xiaoting 已提交
462 463 464

            def test_outshape_and_scale():
                x = fluid.data(name="x", shape=[2, 3, 6, 6], dtype="float32")
465 466 467 468 469
                out = interpolate(x,
                                  size=None,
                                  mode='bicubic',
                                  align_corners=False,
                                  scale_factor=None)
X
xiaoting 已提交
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484

            self.assertRaises(ValueError, test_mode_type)
            self.assertRaises(ValueError, test_input_shape)
            self.assertRaises(TypeError, test_align_corcers)
            self.assertRaises(ValueError, test_attr_data_format)
            self.assertRaises(TypeError, test_actual_shape)
            self.assertRaises(ValueError, test_scale_value)
            self.assertRaises(ValueError, test_out_shape)
            self.assertRaises(ValueError, test_attr_5D_input)
            self.assertRaises(TypeError, test_scale_type)
            self.assertRaises(ValueError, test_align_mode)
            self.assertRaises(ValueError, test_outshape_and_scale)


if __name__ == "__main__":
485
    paddle.enable_static()
X
xiaoting 已提交
486
    unittest.main()