dist_fleet_simnet_bow.py 8.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import argparse
import time
import math
import random
20 21
import shutil
import tempfile
22 23 24 25 26 27 28 29 30 31

import paddle
import paddle.fluid as fluid
import paddle.fluid.profiler as profiler
from paddle.fluid import core
import unittest
from multiprocessing import Process
import os
import signal
from functools import reduce
32
from test_dist_fleet_base import runtime_main, FleetDistRunnerBase
33

P
pangyoki 已提交
34 35
paddle.enable_static()

36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
DTYPE = "int64"
DATA_URL = 'http://paddle-dist-ce-data.bj.bcebos.com/simnet.train.1000'
DATA_MD5 = '24e49366eb0611c552667989de2f57d5'

# For Net
base_lr = 0.2
emb_lr = base_lr * 3
dict_dim = 1500
emb_dim = 128
hid_dim = 128
margin = 0.1
sample_rate = 1

# Fix seed for test
fluid.default_startup_program().random_seed = 1
fluid.default_main_program().random_seed = 1


54
def fake_simnet_reader():
55

56 57 58 59 60 61 62 63 64 65 66
    def reader():
        for _ in range(1000):
            q = np.random.random_integers(0, 1500 - 1, size=1).tolist()
            label = np.random.random_integers(0, 1, size=1).tolist()
            pt = np.random.random_integers(0, 1500 - 1, size=1).tolist()
            nt = np.random.random_integers(0, 1500 - 1, size=1).tolist()
            yield [q, label, pt, nt]

    return reader


67 68 69 70
def get_acc(cos_q_nt, cos_q_pt, batch_size):
    cond = fluid.layers.less_than(cos_q_nt, cos_q_pt)
    cond = fluid.layers.cast(cond, dtype='float64')
    cond_3 = fluid.layers.reduce_sum(cond)
71 72 73 74 75 76
    acc = fluid.layers.elementwise_div(cond_3,
                                       fluid.layers.fill_constant(
                                           shape=[1],
                                           value=batch_size * 1.0,
                                           dtype='float64'),
                                       name="simnet_acc")
77 78 79 80 81
    return acc


def get_loss(cos_q_pt, cos_q_nt):
    loss_op1 = fluid.layers.elementwise_sub(
82 83 84 85
        fluid.layers.fill_constant_batch_size_like(input=cos_q_pt,
                                                   shape=[-1, 1],
                                                   value=margin,
                                                   dtype='float32'), cos_q_pt)
86 87
    loss_op2 = fluid.layers.elementwise_add(loss_op1, cos_q_nt)
    loss_op3 = fluid.layers.elementwise_max(
88 89 90 91
        fluid.layers.fill_constant_batch_size_like(input=loss_op2,
                                                   shape=[-1, 1],
                                                   value=0.0,
                                                   dtype='float32'), loss_op2)
92
    avg_cost = paddle.mean(loss_op3)
93 94 95
    return avg_cost


96 97 98
def train_network(batch_size,
                  is_distributed=False,
                  is_sparse=False,
99 100
                  is_self_contained_lr=False,
                  is_pyreader=False):
101
    # query
102 103 104 105
    q = fluid.layers.data(name="query_ids",
                          shape=[1],
                          dtype="int64",
                          lod_level=1)
106 107 108
    # label data
    label = fluid.layers.data(name="label", shape=[1], dtype="int64")
    # pt
109 110 111 112
    pt = fluid.layers.data(name="pos_title_ids",
                           shape=[1],
                           dtype="int64",
                           lod_level=1)
113
    # nt
114 115 116 117
    nt = fluid.layers.data(name="neg_title_ids",
                           shape=[1],
                           dtype="int64",
                           lod_level=1)
118 119 120 121 122

    datas = [q, label, pt, nt]

    reader = None
    if is_pyreader:
123 124 125 126
        reader = fluid.io.PyReader(feed_list=datas,
                                   capacity=64,
                                   iterable=False,
                                   use_double_buffer=False)
127

128 129
    # embedding
    q_emb = fluid.embedding(
130 131 132 133
        input=q,
        is_distributed=is_distributed,
        size=[dict_dim, emb_dim],
        param_attr=fluid.ParamAttr(
134
            initializer=fluid.initializer.Constant(value=0.01), name="__emb__"),
135
        is_sparse=is_sparse)
136 137
    q_emb = fluid.layers.reshape(q_emb, [-1, emb_dim])
    # vsum
138 139
    q_sum = fluid.layers.sequence_pool(input=q_emb, pool_type='sum')
    q_ss = fluid.layers.softsign(q_sum)
140
    # fc layer after conv
141 142 143 144 145 146
    q_fc = fluid.layers.fc(
        input=q_ss,
        size=hid_dim,
        param_attr=fluid.ParamAttr(
            initializer=fluid.initializer.Constant(value=0.01),
            name="__q_fc__",
147 148
            learning_rate=base_lr),
    )
149

150 151
    # embedding
    pt_emb = fluid.embedding(
152 153 154 155 156 157
        input=pt,
        is_distributed=is_distributed,
        size=[dict_dim, emb_dim],
        param_attr=fluid.ParamAttr(
            initializer=fluid.initializer.Constant(value=0.01),
            name="__emb__",
158
            learning_rate=emb_lr),
159
        is_sparse=is_sparse)
160 161
    pt_emb = fluid.layers.reshape(pt_emb, [-1, emb_dim])
    # vsum
162 163
    pt_sum = fluid.layers.sequence_pool(input=pt_emb, pool_type='sum')
    pt_ss = fluid.layers.softsign(pt_sum)
164
    # fc layer
165 166 167 168
    pt_fc = fluid.layers.fc(
        input=pt_ss,
        size=hid_dim,
        param_attr=fluid.ParamAttr(
169
            initializer=fluid.initializer.Constant(value=0.01), name="__fc__"),
170
        bias_attr=fluid.ParamAttr(name="__fc_b__"))
171

172 173
    # embedding
    nt_emb = fluid.embedding(
174 175 176 177
        input=nt,
        is_distributed=is_distributed,
        size=[dict_dim, emb_dim],
        param_attr=fluid.ParamAttr(
178
            initializer=fluid.initializer.Constant(value=0.01), name="__emb__"),
179
        is_sparse=is_sparse)
180 181
    nt_emb = fluid.layers.reshape(nt_emb, [-1, emb_dim])
    # vsum
182 183
    nt_sum = fluid.layers.sequence_pool(input=nt_emb, pool_type='sum')
    nt_ss = fluid.layers.softsign(nt_sum)
184
    # fc layer
185 186 187 188
    nt_fc = fluid.layers.fc(
        input=nt_ss,
        size=hid_dim,
        param_attr=fluid.ParamAttr(
189
            initializer=fluid.initializer.Constant(value=0.01), name="__fc__"),
190 191 192 193 194 195 196
        bias_attr=fluid.ParamAttr(name="__fc_b__"))
    cos_q_pt = fluid.layers.cos_sim(q_fc, pt_fc)
    cos_q_nt = fluid.layers.cos_sim(q_fc, nt_fc)
    # loss
    avg_cost = get_loss(cos_q_pt, cos_q_nt)
    # acc
    acc = get_acc(cos_q_nt, cos_q_pt, batch_size)
197 198 199 200 201 202 203 204 205 206 207
    return avg_cost, acc, cos_q_pt, reader


class TestDistSimnetBow2x2(FleetDistRunnerBase):
    """
    For test SimnetBow model, use Fleet api
    """

    def net(self, args, batch_size=4, lr=0.01):
        avg_cost, _, predict, self.reader = \
            train_network(batch_size=batch_size, is_distributed=False,
208
                          is_sparse=True, is_self_contained_lr=False, is_pyreader=(args.reader == "pyreader"))
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
        self.avg_cost = avg_cost
        self.predict = predict

        return avg_cost

    def check_model_right(self, dirname):
        model_filename = os.path.join(dirname, "__model__")

        with open(model_filename, "rb") as f:
            program_desc_str = f.read()

        program = fluid.Program.parse_from_string(program_desc_str)
        with open(os.path.join(dirname, "__model__.proto"), "w") as wn:
            wn.write(str(program))

    def do_pyreader_training(self, fleet):
        """
        do training using dataset, using fetch handler to catch variable
        Args:
            fleet(Fleet api): the fleet object of Parameter Server, define distribute training role
        """

        exe = fluid.Executor(fluid.CPUPlace())
        exe.run(fluid.default_startup_program())
T
tangwei12 已提交
233
        fleet.init_worker()
234 235 236 237 238 239 240 241 242 243 244 245
        batch_size = 4
        # reader
        train_reader = paddle.batch(fake_simnet_reader(), batch_size=batch_size)
        self.reader.decorate_sample_list_generator(train_reader)
        for epoch_id in range(1):
            self.reader.start()
            try:
                pass_start = time.time()
                while True:
                    loss_val = exe.run(program=fluid.default_main_program(),
                                       fetch_list=[self.avg_cost.name])
                    loss_val = np.mean(loss_val)
246 247
                    message = "TRAIN ---> pass: {} loss: {}\n".format(
                        epoch_id, loss_val)
248
                    fleet.util.print_on_rank(message, 0)
249 250 251 252 253 254 255

                pass_time = time.time() - pass_start
            except fluid.core.EOFException:
                self.reader.reset()

    def do_dataset_training(self, fleet):
        pass
256 257 258 259


if __name__ == "__main__":
    runtime_main(TestDistSimnetBow2x2)