expand_op.cc 5.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
yangyaming 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/expand_op.h"
16
#include <vector>
Y
yangyaming 已提交
17 18 19 20 21 22 23 24 25 26 27

namespace paddle {
namespace operators {

using framework::Tensor;

class ExpandOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
Y
yangyaming 已提交
28
  void InferShape(framework::InferShapeContext* ctx) const override {
29 30 31
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"), "Output(Out) should not be null.");

Y
yangyaming 已提交
32
    std::vector<int> expand_times =
33
        ctx->Attrs().Get<std::vector<int>>("expand_times");
Y
yangyaming 已提交
34 35 36
    auto x_dims = ctx->GetInputDim("X");

    PADDLE_ENFORCE_EQ(static_cast<size_t>(x_dims.size()), expand_times.size(),
37
                      "The number of Attr(expand_times)'s value must be equal "
Y
yangyaming 已提交
38
                      "to the rank of Input(X).");
Y
yangyaming 已提交
39
    PADDLE_ENFORCE_LE(x_dims.size(), 6,
Y
yangyaming 已提交
40
                      "The rank of Input(X) must not be greater than 6.");
Y
yangyaming 已提交
41 42 43 44

    std::vector<int64_t> out_shape(x_dims.size());
    for (size_t i = 0; i < expand_times.size(); ++i) {
      PADDLE_ENFORCE_GE(expand_times[i], 1,
45
                        "Each value of Attr(expand_times) should not be "
Y
yangyaming 已提交
46 47 48
                        "less than 1.");
      out_shape[i] = x_dims[i] * expand_times[i];
    }
Y
yangyaming 已提交
49

M
minqiyang 已提交
50 51 52 53 54
    // set the first dim to -1 in compile time
    if (!ctx->IsRuntime()) {
      out_shape[0] = x_dims[0];
    }

Y
yangyaming 已提交
55
    ctx->SetOutputDim("Out", framework::make_ddim(out_shape));
56 57 58
    if (out_shape[0] == x_dims[0]) {
      ctx->ShareLoD("X", "Out");
    }
Y
yangyaming 已提交
59 60 61 62 63
  }
};

class ExpandOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
64
  void Make() override {
Y
yangyaming 已提交
65
    AddInput("X",
C
caoying03 已提交
66 67
             "(Tensor, default Tensor<float>). A tensor with rank in [1, 6]."
             "X is the input to be expanded.");
Y
yangyaming 已提交
68
    AddOutput("Out",
C
caoying03 已提交
69 70 71 72 73
              "(Tensor, default Tensor<float>). A tensor with rank in [1, 6]."
              "The rank of Output(Out) have the same with Input(X). "
              "After expanding, size of each dimension of Output(Out) is equal "
              "to size of the corresponding dimension of Input(X) multiplying "
              "the corresponding value given by Attr(expand_times).");
74
    AddAttr<std::vector<int>>("expand_times",
Y
yangyaming 已提交
75
                              "Expand times number for each dimension.");
Y
yangyaming 已提交
76
    AddComment(R"DOC(
Y
yangyaming 已提交
77
Expand operator tiles the input by given times number. You should set times
78
number for each dimension by providing attribute 'expand_times'. The rank of X
C
caoying03 已提交
79 80
should be in [1, 6]. Please note that size of 'expand_times' must be the same
with X's rank. Following is a using case:
Y
yangyaming 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97

Input(X) is a 3-D tensor with shape [2, 3, 1]:

        [
           [[1], [2], [3]],
           [[4], [5], [6]]
        ]

Attr(expand_times):  [1, 2, 2]

Output(Out) is a 3-D tensor with shape [2, 6, 2]:

        [
            [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
            [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
        ]

Y
yangyaming 已提交
98 99 100 101 102 103 104 105 106
)DOC");
  }
};

class ExpandGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
Y
yangyaming 已提交
107 108 109 110
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null.");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should not be null.");
111

Y
yangyaming 已提交
112 113
    auto x_dims = ctx->GetInputDim("X");
    std::vector<int> expand_times =
114
        ctx->Attrs().Get<std::vector<int>>("expand_times");
Y
yangyaming 已提交
115
    auto out_dims = ctx->GetInputDim(framework::GradVarName("Out"));
Y
yangyaming 已提交
116 117 118

    for (size_t i = 0; i < expand_times.size(); ++i) {
      PADDLE_ENFORCE_EQ(x_dims[i] * expand_times[i], out_dims[i],
Y
yangyaming 已提交
119 120
                        "Each dimension size of Input(Out@GRAD) should be "
                        "equal to multiplication of crroresponding dimension "
121
                        "size of Input(X) and Attr(expand_times) value.");
Y
yangyaming 已提交
122 123
    }

Y
yangyaming 已提交
124 125 126 127 128
    auto x_grad_name = framework::GradVarName("X");

    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, x_dims);
    }
Y
yangyaming 已提交
129 130 131 132 133 134 135
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
136
REGISTER_OPERATOR(expand, ops::ExpandOp, ops::ExpandOpMaker,
137 138
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(expand_grad, ops::ExpandGradOp);
Y
yangyaming 已提交
139
REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
140 141 142 143
    expand, ops::ExpandKernel<paddle::platform::CPUDeviceContext, float>);
REGISTER_OP_CPU_KERNEL(
    expand_grad,
    ops::ExpandGradKernel<paddle::platform::CPUDeviceContext, float>);