test_expand_as_op.py 4.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
from op_test import OpTest
import paddle.fluid as fluid


def bcast(x, target_tensor):
    x_dims = x.shape
    y_dims = target_tensor.shape
    bcast_dims = []
    for i in range(len(x_dims)):
        bcast_dims.append(int(y_dims[i] / x_dims[i]))
    bcast_dims = np.array(bcast_dims).astype("int64")
    return bcast_dims


class TestExpandAsOpRank1(OpTest):
    def setUp(self):
        self.op_type = "expand_as"
        x = np.random.rand(12).astype("float64")
        target_tensor = np.random.rand(24).astype("float64")
        self.inputs = {'X': x, 'target_tensor': target_tensor}
        self.attrs = {}
        bcast_dims = bcast(x, target_tensor)
        output = np.tile(self.inputs['X'], bcast_dims)
        self.outputs = {'Out': output}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


class TestExpandAsOpRank2(OpTest):
    def setUp(self):
        self.op_type = "expand_as"
        x = np.random.rand(2, 3).astype("float64")
        target_tensor = np.random.rand(4, 6).astype("float64")
        self.inputs = {'X': x, 'target_tensor': target_tensor}
        self.attrs = {}
        bcast_dims = bcast(x, target_tensor)
        output = np.tile(self.inputs['X'], bcast_dims)
        self.outputs = {'Out': output}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


class TestExpandAsOpRank3(OpTest):
    def setUp(self):
        self.op_type = "expand_as"
        x = np.random.rand(2, 3, 3).astype("float64")
        target_tensor = np.random.rand(4, 6, 6).astype("float64")
        self.inputs = {'X': x, 'target_tensor': target_tensor}
        self.attrs = {}
        bcast_dims = bcast(x, target_tensor)
        output = np.tile(self.inputs['X'], bcast_dims)
        self.outputs = {'Out': output}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


class TestExpandAsOpRank4(OpTest):
    def setUp(self):
        self.op_type = "expand_as"
        x = np.random.rand(1, 1, 3, 16).astype("float64")
        target_tensor = np.random.rand(4, 6, 6, 32).astype("float64")
        self.inputs = {'X': x, 'target_tensor': target_tensor}
        self.attrs = {}
        bcast_dims = bcast(x, target_tensor)
        output = np.tile(self.inputs['X'], bcast_dims)
        self.outputs = {'Out': output}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')


# Test python API
class TestExpandAPI(OpTest):
    def test_api(self):
        input1 = np.random.random([12, 14]).astype("float32")
        input2 = np.random.random([48, 14]).astype("float32")
        x = fluid.layers.data(
            name='x', shape=[12, 14], append_batch_size=False, dtype="float32")

        y = fluid.layers.data(
            name='target_tensor',
            shape=[48, 14],
            append_batch_size=False,
            dtype="float32")

        out_1 = fluid.layers.expand_as(x, target_tensor=y)

        exe = fluid.Executor(place=fluid.CPUPlace())
        res_1 = exe.run(fluid.default_main_program(),
                        feed={"x": input1,
                              "target_tensor": input2},
                        fetch_list=[out_1])
        assert np.array_equal(res_1[0], np.tile(input1, (4, 1)))


if __name__ == "__main__":
    unittest.main()