TensorReductionGpu.h 41.0 KB
Newer Older
Z
zhulei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
// clang-format off
#ifndef EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_GPU_H
#define EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_GPU_H

namespace Eigen {
namespace internal {

#if defined(EIGEN_USE_GPU) && defined(EIGEN_GPUCC)
// Full reducers for GPU, don't vectorize for now

// Reducer function that enables multiple gpu thread to safely accumulate at the same
// output address. It basically reads the current value of the output variable, and
// attempts to update it with the new value. If in the meantime another gpu thread
// updated the content of the output address it will try again.
template <typename T, typename R>
__device__ EIGEN_ALWAYS_INLINE void atomicReduce(T* output, T accum, R& reducer) {
#if (defined(EIGEN_HIP_DEVICE_COMPILE) && defined(__HIP_ARCH_HAS_WARP_SHUFFLE__)) || (EIGEN_CUDA_ARCH >= 300)
  if (sizeof(T) == 4)
  {
    unsigned int oldval = *reinterpret_cast<unsigned int*>(output);
    unsigned int newval = oldval;
    reducer.reduce(accum, reinterpret_cast<T*>(&newval));
    if (newval == oldval) {
      return;
    }
    unsigned int readback;
    while ((readback = atomicCAS((unsigned int*)output, oldval, newval)) != oldval) {
      oldval = readback;
      newval = oldval;
      reducer.reduce(accum, reinterpret_cast<T*>(&newval));
      if (newval == oldval) {
        return;
      }
    }
  }
  else if (sizeof(T) == 8) {
    unsigned long long oldval = *reinterpret_cast<unsigned long long*>(output);
    unsigned long long newval = oldval;
    reducer.reduce(accum, reinterpret_cast<T*>(&newval));
    if (newval == oldval) {
      return;
    }
    unsigned long long readback;
    while ((readback = atomicCAS((unsigned long long*)output, oldval, newval)) != oldval) {
      oldval = readback;
      newval = oldval;
      reducer.reduce(accum, reinterpret_cast<T*>(&newval));
      if (newval == oldval) {
        return;
      }
    }
  }
  else {
    gpu_assert(0 && "Wordsize not supported");
  }
#else // EIGEN_CUDA_ARCH >= 300
  gpu_assert(0 && "Shouldn't be called on unsupported device");
#endif // EIGEN_CUDA_ARCH >= 300
}

// We extend atomicExch to support extra data types
template <typename Type>
__device__ inline Type atomicExchCustom(Type* address, Type val) {
  return atomicExch(address, val);
}

template <>
__device__ inline double atomicExchCustom(double* address, double val) {
  unsigned long long int* address_as_ull = reinterpret_cast<unsigned long long int*>(address);
  return __longlong_as_double(atomicExch(address_as_ull, __double_as_longlong(val)));
}

#ifdef EIGEN_HAS_GPU_FP16
template <template <typename T> class R>
__device__ inline void atomicReduce(half2* output, half2 accum, R<half>& reducer) {
  unsigned int oldval = *reinterpret_cast<unsigned int*>(output);
  unsigned int newval = oldval;
  reducer.reducePacket(accum, reinterpret_cast<half2*>(&newval));
  if (newval == oldval) {
    return;
  }
  unsigned int readback;
  while ((readback = atomicCAS((unsigned int*)output, oldval, newval)) != oldval) {
    oldval = readback;
    newval = oldval;
    reducer.reducePacket(accum, reinterpret_cast<half2*>(&newval));
    if (newval == oldval) {
      return;
    }
  }
}
// reduction should be associative since reduction is not atomic in wide vector but atomic in half2 operations
template <template <typename T> class R>
__device__ inline void atomicReduce(Packet4h2* output, Packet4h2 accum,
                                    R<half>& reducer) {
  half2* houtput=reinterpret_cast<half2*>(output);
  half2* haccum=reinterpret_cast<half2*>(&accum);
  for(int i=0;i<4;++i){
    atomicReduce(houtput+i,*(haccum+i),reducer);
  }
}
#endif  // EIGEN_HAS_GPU_FP16

template <>
__device__ inline void atomicReduce(float* output, float accum, SumReducer<float>&) {
#if (defined(EIGEN_HIP_DEVICE_COMPILE) && defined(__HIP_ARCH_HAS_WARP_SHUFFLE__)) || (EIGEN_CUDA_ARCH >= 300)
  atomicAdd(output, accum);
#else // EIGEN_CUDA_ARCH >= 300
  gpu_assert(0 && "Shouldn't be called on unsupported device");
#endif // EIGEN_CUDA_ARCH >= 300
}


template <typename CoeffType, typename Index>
__global__ void ReductionInitKernel(const CoeffType val, Index num_preserved_coeffs, CoeffType* output) {
  const Index thread_id = blockIdx.x * blockDim.x + threadIdx.x;
  const Index num_threads = blockDim.x * gridDim.x;
  for (Index i = thread_id; i < num_preserved_coeffs; i += num_threads) {
    output[i] = val;
  }
}


template <int BlockSize, int NumPerThread, typename Self,
          typename Reducer, typename Index>
__global__ void FullReductionKernel(Reducer reducer, const Self input, Index num_coeffs,
                                    typename Self::CoeffReturnType* output, unsigned int* semaphore) {
#if (defined(EIGEN_HIP_DEVICE_COMPILE) && defined(__HIP_ARCH_HAS_WARP_SHUFFLE__)) || (EIGEN_CUDA_ARCH >= 300)
  // Initialize the output value
  const Index first_index = blockIdx.x * BlockSize * NumPerThread + threadIdx.x;
  if (gridDim.x == 1) {
    if (first_index == 0) {
      *output = reducer.initialize();
    }
  }
  else {
    if (threadIdx.x == 0) {
      unsigned int block = atomicCAS(semaphore, 0u, 1u);
      if (block == 0) {
        // We're the first block to run, initialize the output value
        atomicExchCustom(output, reducer.initialize());
        __threadfence();
        atomicExch(semaphore, 2u);
      }
      else {
        // Wait for the first block to initialize the output value.
        // Use atomicCAS here to ensure that the reads aren't cached
        unsigned int val;
        do {
          val = atomicCAS(semaphore, 2u, 2u);
        }
        while (val < 2u);
      }
    }
  }

  __syncthreads();

  eigen_assert(gridDim.x == 1 || *semaphore >= 2u);

  typename Self::CoeffReturnType accum = reducer.initialize();
  Index max_iter = numext::mini<Index>(num_coeffs - first_index, NumPerThread*BlockSize);
  for (Index i = 0; i < max_iter; i+=BlockSize) {
    const Index index = first_index + i;
    eigen_assert(index < num_coeffs);
    typename Self::CoeffReturnType val = input.m_impl.coeff(index);
    reducer.reduce(val, &accum);
  }

#pragma unroll
  for (int offset = warpSize/2; offset > 0; offset /= 2) {
  #if defined(EIGEN_HIPCC)
    // use std::is_floating_point to determine the type of reduced_val 
    // This is needed because when Type == double, hipcc will give a "call to __shfl_down is ambguous" error 
    // and list the float and int versions of __shfl_down as the candidate functions. 
    if (std::is_floating_point<typename Self::CoeffReturnType>::value) {
      reducer.reduce(__shfl_down(static_cast<float>(accum), offset, warpSize), &accum);
    } else {
      reducer.reduce(__shfl_down(static_cast<int>(accum), offset, warpSize), &accum);
    }
  #elif defined(EIGEN_CUDA_SDK_VER) && EIGEN_CUDA_SDK_VER < 90000
    reducer.reduce(__shfl_down(accum, offset, warpSize), &accum);
  #else
    reducer.reduce(__shfl_down_sync(0xFFFFFFFF, accum, offset, warpSize), &accum);
  #endif
  }

  if ((threadIdx.x & (warpSize - 1)) == 0) {
    atomicReduce(output, accum, reducer);
  }

  if (gridDim.x > 1 && threadIdx.x == 0) {
    // Let the last block reset the semaphore
    atomicInc(semaphore, gridDim.x + 1);
#if defined(EIGEN_HIPCC)
    __threadfence_system();
#endif
  }
#else // EIGEN_CUDA_ARCH >= 300
  gpu_assert(0 && "Shouldn't be called on unsupported device");
#endif // EIGEN_CUDA_ARCH >= 300
}


#ifdef EIGEN_HAS_GPU_FP16
template <typename Self,
          typename Reducer, typename Index>
__global__ void ReductionInitFullReduxKernelHalfFloat(Reducer reducer, const Self input, Index num_coeffs,
                                                      packet_traits<Eigen::half>::type* scratch) {
  eigen_assert(blockDim.x == 1);
  eigen_assert(gridDim.x == 1);
  typedef packet_traits<Eigen::half>::type packet_type;
  Index packet_remainder =
      num_coeffs % Index(unpacket_traits<packet_type>::size);
  if (packet_remainder != 0) {
    half2* h2scratch = reinterpret_cast<half2*>(scratch);
    for (Index i = num_coeffs - packet_remainder; i + 2 <= num_coeffs; i += 2) {
      *h2scratch =
          __halves2half2(input.m_impl.coeff(i), input.m_impl.coeff(i + 1));
      h2scratch++;
    }
    if ((num_coeffs & 1) != 0) {
      half lastCoeff = input.m_impl.coeff(num_coeffs - 1);
      *h2scratch = __halves2half2(lastCoeff, reducer.initialize());
    }
  } else {
    *scratch = reducer.template initializePacket<packet_type>();
  }
}

template <typename Self,
          typename Reducer, typename Index>
__global__ void ReductionInitKernelHalfFloat(Reducer reducer, const Self input, Index num_coeffs, half* output) {
  const Index thread_id = blockIdx.x * blockDim.x + threadIdx.x;
  const Index num_threads = blockDim.x * gridDim.x;
  typedef typename packet_traits<Eigen::half>::type PacketType;

  const Index num_packets =
      num_coeffs / Index(unpacket_traits<PacketType>::size);
  PacketType* p_output = reinterpret_cast<PacketType*>(output);
  for (Index i = thread_id; i < num_packets; i += num_threads) {
    p_output[i] = reducer.template initializePacket<PacketType>();
  }
  Index packet_remainder =
      num_coeffs % Index(unpacket_traits<PacketType>::size);
  if (thread_id < packet_remainder) {
    output[num_coeffs - packet_remainder + thread_id] = reducer.initialize();
  }
}

template <int BlockSize, int NumPerThread, typename Self,
          typename Reducer, typename Index>
__global__ void FullReductionKernelHalfFloat(Reducer reducer, const Self input, Index num_coeffs,
                                    half* output, packet_traits<Eigen::half>::type* scratch) {
  typedef typename packet_traits<Eigen::half>::type PacketType;
  const int packet_width = unpacket_traits<PacketType>::size;
  eigen_assert(NumPerThread % packet_width == 0);
  const Index first_index =
      blockIdx.x * BlockSize * NumPerThread + packet_width * threadIdx.x;

  // Initialize the output value if it wasn't initialized by the ReductionInitKernel

  if (gridDim.x == 1) {
    if (first_index == 0) {
      int rem = num_coeffs % packet_width;
      if (rem != 0) {
        half2* p_scratch = reinterpret_cast<half2*>(scratch);
        *scratch = reducer.template initializePacket<PacketType>();
        for (int i = 0; i < rem / 2; i++) {
          *p_scratch = __halves2half2(
              input.m_impl.coeff(num_coeffs - packet_width + 2 * i),
              input.m_impl.coeff(num_coeffs - packet_width + 2 * i + 1));
          p_scratch++;
        }
        if ((num_coeffs & 1) != 0) {
          half last = input.m_impl.coeff(num_coeffs - 1);
          *p_scratch = __halves2half2(last, reducer.initialize());
        }
      } else {
        *scratch = reducer.template initializePacket<PacketType>();
      }
    }
    __syncthreads();
  }

  PacketType accum = reducer.template initializePacket<PacketType>();
  const Index max_iter =
      numext::mini<Index>((num_coeffs - first_index) / packet_width,
                          NumPerThread * BlockSize / packet_width);
  for (Index i = 0; i < max_iter; i += BlockSize) {
    const Index index = first_index + packet_width * i;
    eigen_assert(index + packet_width < num_coeffs);
    PacketType val = input.m_impl.template packet<Unaligned>(index);
    reducer.reducePacket(val, &accum);
  }

#pragma unroll
  for (int offset = warpSize/2; offset > 0; offset /= 2) {
  #if defined(EIGEN_HIPCC)
    PacketType r1;
    half2* hr = reinterpret_cast<half2*>(&r1);
    half2* hacc = reinterpret_cast<half2*>(&accum);
    for (int i = 0; i < packet_width / 2; i++) {
      // FIXME : remove this workaround once we have native half/half2 support for __shfl_down
      union { int i; half2 h; } wka_in, wka_out;
      wka_in.h = hacc[i];
      wka_out.i = __shfl_down(wka_in.i, offset, warpSize);
      hr[i] = wka_out.h;
    }
    reducer.reducePacket(r1, &accum);
  #elif defined(EIGEN_CUDA_SDK_VER) && EIGEN_CUDA_SDK_VER < 90000
    PacketType r1;
    half2* hr = reinterpret_cast<half2*>(&r1);
    half2* hacc = reinterpret_cast<half2*>(&accum);
    for (int i = 0; i < packet_width / 2; i++) {
      hr[i] = __shfl_down(hacc[i], offset, warpSize);
    }
    reducer.reducePacket(r1, &accum);
  #else
    PacketType r1;
    half2* hr = reinterpret_cast<half2*>(&r1);
    half2* hacc = reinterpret_cast<half2*>(&accum);
    for (int i = 0; i < packet_width / 2; i++) {
      hr[i] = __shfl_down_sync(0xFFFFFFFF, hacc[i], (unsigned)offset, warpSize);
    }
    reducer.reducePacket(r1, &accum);

  #endif
  }

  if ((threadIdx.x & (warpSize - 1)) == 0) {
    atomicReduce(scratch, accum, reducer);
  }

  __syncthreads();
  half2* rv1 = reinterpret_cast<half2*>(scratch);
  if (packet_width > 2) {
    reducer.reducePacket(rv1[2], rv1);
    reducer.reducePacket(rv1[3], rv1 + 1);
    reducer.reducePacket(rv1[1], rv1);
  }
  if (gridDim.x == 1) {
    if (first_index == 0) {
      half tmp = __low2half(*rv1);
      reducer.reduce(__high2half(*rv1), &tmp);
      *output = tmp;
    }
  }
}

template <typename Op>
__global__ void ReductionCleanupKernelHalfFloat(Op reducer, half* output, packet_traits<Eigen::half>::type* scratch) {
  eigen_assert(threadIdx.x == 1);
  half2* pscratch = reinterpret_cast<half2*>(scratch);
  half tmp = __float2half(0.f);
  typedef packet_traits<Eigen::half>::type packet_type;
  for (int i = 0; i < unpacket_traits<packet_type>::size; i += 2) {
    reducer.reduce(__low2half(*pscratch), &tmp);
    reducer.reduce(__high2half(*pscratch), &tmp);
    pscratch++;
  }
  *output = tmp;
}

#endif // EIGEN_HAS_GPU_FP16

template <typename Self, typename Op, typename OutputType, bool PacketAccess, typename Enabled = void>
struct FullReductionLauncher {
  static void run(const Self&, Op&, const GpuDevice&, OutputType*, typename Self::Index) {
    gpu_assert(false && "Should only be called on doubles, floats and half floats");
  }
};

// Specialization for float and double
template <typename Self, typename Op, typename OutputType, bool PacketAccess>
struct FullReductionLauncher<
    Self, Op, OutputType, PacketAccess,
    typename internal::enable_if<
      internal::is_same<float, OutputType>::value ||
      internal::is_same<double, OutputType>::value,
    void>::type> {
  static void run(const Self& self, Op& reducer, const GpuDevice& device, OutputType* output, typename Self::Index num_coeffs) {

    typedef typename Self::Index Index;
    const int block_size = 256;
    const int num_per_thread = 128;
    const int num_blocks = divup<int>(num_coeffs, block_size * num_per_thread);

    unsigned int* semaphore = NULL;
    if (num_blocks > 1) {
      semaphore = device.semaphore();
    }

    LAUNCH_GPU_KERNEL((FullReductionKernel<block_size, num_per_thread, Self, Op, Index>),
                       num_blocks, block_size, 0, device, reducer, self, num_coeffs, output, semaphore);
  }
};

#ifdef EIGEN_HAS_GPU_FP16
template <typename Self, typename Op>
struct FullReductionLauncher<Self, Op, Eigen::half, false> {
  static void run(const Self&, Op&, const GpuDevice&, half*, typename Self::Index) {
    gpu_assert(false && "Should not be called since there is no packet accessor");
  }
};

template <typename Self, typename Op>
struct FullReductionLauncher<Self, Op, Eigen::half, true> {
  static void run(const Self& self, Op& reducer, const GpuDevice& device, half* output, typename Self::Index num_coeffs) {
    typedef typename Self::Index Index;
    typedef typename packet_traits<Eigen::half>::type PacketType;

    const int block_size = 256;
    const int num_per_thread = 128;
    const int num_blocks = divup<int>(num_coeffs, block_size * num_per_thread);
    PacketType* scratch = static_cast<PacketType*>(device.scratchpad());
    // half2* scratch = static_cast<half2*>(device.scratchpad());

    if (num_blocks > 1) {
      // We initialize the output and the scrathpad outside the reduction kernel when we can't be sure that there
      // won't be a race conditions between multiple thread blocks.
      LAUNCH_GPU_KERNEL((ReductionInitFullReduxKernelHalfFloat<Self, Op, Index>),
                         1, 1, 0, device, reducer, self, num_coeffs, scratch);
    }

    LAUNCH_GPU_KERNEL((FullReductionKernelHalfFloat<block_size, num_per_thread, Self, Op, Index>),
                       num_blocks, block_size, 0, device, reducer, self, num_coeffs, output, scratch);

    if (num_blocks > 1) {
      LAUNCH_GPU_KERNEL((ReductionCleanupKernelHalfFloat<Op>),
                         1, 1, 0, device, reducer, output, scratch);
    }
  }
};
#endif // EIGEN_HAS_GPU_FP16


template <typename Self, typename Op, bool Vectorizable>
struct FullReducer<Self, Op, GpuDevice, Vectorizable> {
  // Unfortunately nvidia doesn't support well exotic types such as complex,
  // so reduce the scope of the optimized version of the code to the simple cases
  // of doubles, floats and half floats
#ifdef EIGEN_HAS_GPU_FP16
  static const bool HasOptimizedImplementation = !Self::ReducerTraits::IsStateful &&
      (internal::is_same<typename Self::CoeffReturnType, float>::value ||
       internal::is_same<typename Self::CoeffReturnType, double>::value ||
       (internal::is_same<typename Self::CoeffReturnType, Eigen::half>::value && reducer_traits<Op, GpuDevice>::PacketAccess));
#else // EIGEN_HAS_GPU_FP16
  static const bool HasOptimizedImplementation = !Self::ReducerTraits::IsStateful &&
                                                (internal::is_same<typename Self::CoeffReturnType, float>::value ||
                                                 internal::is_same<typename Self::CoeffReturnType, double>::value);
#endif // EIGEN_HAS_GPU_FP16

  template <typename OutputType>
  static void run(const Self& self, Op& reducer, const GpuDevice& device, OutputType* output) {
    gpu_assert(HasOptimizedImplementation && "Should only be called on doubles, floats or half floats");
    const Index num_coeffs = array_prod(self.m_impl.dimensions());
    // Don't crash when we're called with an input tensor of size 0.
    if (num_coeffs == 0) {
      return;
    }

    FullReductionLauncher<Self, Op, OutputType, reducer_traits<Op, GpuDevice>::PacketAccess>::run(self, reducer, device, output, num_coeffs);
  }
};


template <int NumPerThread, typename Self,
          typename Reducer, typename Index>
__global__ void InnerReductionKernel(Reducer reducer, const Self input, Index num_coeffs_to_reduce, Index num_preserved_coeffs,
                                         typename Self::CoeffReturnType* output) {
#if (defined(EIGEN_HIP_DEVICE_COMPILE) && defined(__HIP_ARCH_HAS_WARP_SHUFFLE__)) || (EIGEN_CUDA_ARCH >= 300)
  typedef typename Self::CoeffReturnType Type;
  eigen_assert(blockDim.y == 1);
  eigen_assert(blockDim.z == 1);
  eigen_assert(gridDim.y == 1);
  eigen_assert(gridDim.z == 1);

  const int unroll_times = 16;
  eigen_assert(NumPerThread % unroll_times == 0);

  const Index input_col_blocks = divup<Index>(num_coeffs_to_reduce, blockDim.x * NumPerThread);
  const Index num_input_blocks = input_col_blocks * num_preserved_coeffs;

  const Index num_threads = blockDim.x * gridDim.x;
  const Index thread_id = blockIdx.x * blockDim.x + threadIdx.x;

  // Initialize the output values if they weren't initialized by the ReductionInitKernel
  if (gridDim.x == 1) {
    for (Index i = thread_id; i < num_preserved_coeffs; i += num_threads) {
      output[i] = reducer.initialize();
    }
    __syncthreads();
  }

  for (Index i = blockIdx.x; i < num_input_blocks; i += gridDim.x) {
    const Index row = i / input_col_blocks;

    if (row < num_preserved_coeffs) {
      const Index col_block = i % input_col_blocks;
      const Index col_begin = col_block * blockDim.x * NumPerThread + threadIdx.x;

      Type reduced_val = reducer.initialize();

      for (Index j = 0; j < NumPerThread; j += unroll_times) {
        const Index last_col = col_begin + blockDim.x * (j + unroll_times - 1);
        if (last_col >= num_coeffs_to_reduce) {
          for (Index col = col_begin + blockDim.x * j; col < num_coeffs_to_reduce; col += blockDim.x) {
            const Type val = input.m_impl.coeff(row * num_coeffs_to_reduce + col);
            reducer.reduce(val, &reduced_val);
          }
          break;
        } else {
          // Faster version of the loop with no branches after unrolling.
#pragma unroll
          for (int k = 0; k < unroll_times; ++k) {
            const Index col = col_begin + blockDim.x * (j + k);
            reducer.reduce(input.m_impl.coeff(row * num_coeffs_to_reduce + col), &reduced_val);
          }
        }
      }

#pragma unroll
      for (int offset = warpSize/2; offset > 0; offset /= 2) {
      #if defined(EIGEN_HIPCC)
        // use std::is_floating_point to determine the type of reduced_val 
       // This is needed because when Type == double, hipcc will give a "call to __shfl_down is ambguous" error 
       // and list the float and int versions of __shfl_down as the candidate functions. 
        if (std::is_floating_point<Type>::value) {
          reducer.reduce(__shfl_down(static_cast<float>(reduced_val), offset), &reduced_val);
        } else {
          reducer.reduce(__shfl_down(static_cast<int>(reduced_val), offset), &reduced_val);
        }
      #elif defined(EIGEN_CUDA_SDK_VER) && EIGEN_CUDA_SDK_VER < 90000
        reducer.reduce(__shfl_down(reduced_val, offset), &reduced_val);
      #else
        reducer.reduce(__shfl_down_sync(0xFFFFFFFF, reduced_val, offset), &reduced_val);
      #endif
      }

      if ((threadIdx.x & (warpSize - 1)) == 0) {
        atomicReduce(&(output[row]), reduced_val, reducer);
      }
    }
  }
#else // EIGEN_CUDA_ARCH >= 300
  gpu_assert(0 && "Shouldn't be called on unsupported device");
#endif // EIGEN_CUDA_ARCH >= 300
}

#ifdef EIGEN_HAS_GPU_FP16

template <int NumPerThread, typename Self,
          typename Reducer, typename Index>
__global__ void InnerReductionKernelHalfFloat(Reducer reducer, const Self input, Index num_coeffs_to_reduce, Index num_preserved_coeffs,
                                              half* output) {
  eigen_assert(blockDim.y == 1);
  eigen_assert(blockDim.z == 1);
  eigen_assert(gridDim.y == 1);
  eigen_assert(gridDim.z == 1);

  typedef typename packet_traits<Eigen::half>::type PacketType;
  const int packet_width = unpacket_traits<PacketType>::size;
  const int unroll_times = 16 / packet_width;
  eigen_assert(NumPerThread % unroll_times == 0);
  eigen_assert(unroll_times % 2 == 0);

  const Index input_col_blocks = divup<Index>(num_coeffs_to_reduce, blockDim.x * NumPerThread * 2);
  const Index num_input_blocks = divup<Index>(input_col_blocks * num_preserved_coeffs, 2);

  const Index num_threads = blockDim.x * gridDim.x;
  const Index thread_id = blockIdx.x * blockDim.x + threadIdx.x;

  // Initialize the output values if they weren't initialized by the ReductionInitKernel
  if (gridDim.x == 1) {
    Index i = packet_width * thread_id;
    for (; i + packet_width <= num_preserved_coeffs;
         i += packet_width * num_threads) {
      PacketType* poutput = reinterpret_cast<PacketType*>(output + i);
      *poutput = reducer.template initializePacket<PacketType>();
    }
    if (i < num_preserved_coeffs) {
      output[i] = reducer.initialize();
    }
    __syncthreads();
  }

  for (Index i = blockIdx.x; i < num_input_blocks; i += gridDim.x) {
    const Index row = 2 * (i / input_col_blocks);  // everybody takes 2 rows

    if (row + 1 < num_preserved_coeffs) {
      const Index col_block = i % input_col_blocks;
      const Index col_begin =
          packet_width * (col_block * blockDim.x * NumPerThread + threadIdx.x);

      PacketType reduced_val1 = reducer.template initializePacket<PacketType>();
      PacketType reduced_val2 = reducer.template initializePacket<PacketType>();

      for (Index j = 0; j < NumPerThread; j += unroll_times) {
        const Index last_col =
            col_begin + blockDim.x * (j + unroll_times - 1) * packet_width;
        if (last_col >= num_coeffs_to_reduce) {
          Index col = col_begin + blockDim.x * j;
          for (; col + packet_width <= num_coeffs_to_reduce;
               col += blockDim.x) {
            const PacketType val1 = input.m_impl.template packet<Unaligned>(
                row * num_coeffs_to_reduce + col);
            reducer.reducePacket(val1, &reduced_val1);
            const PacketType val2 = input.m_impl.template packet<Unaligned>(
                (row + 1) * num_coeffs_to_reduce + col);
            reducer.reducePacket(val2, &reduced_val2);
          }
          if (col < num_coeffs_to_reduce) {
            PacketType r1 = reducer.template initializePacket<PacketType>();
            PacketType r2 = reducer.template initializePacket<PacketType>();
            half2* hr1 = reinterpret_cast<half2*>(&r1);
            half2* hr2 = reinterpret_cast<half2*>(&r2);
            while (col + 1 < num_coeffs_to_reduce) {
              *hr1 = __halves2half2(
                  input.m_impl.coeff(row * num_coeffs_to_reduce + col),
                  input.m_impl.coeff(row * num_coeffs_to_reduce + col + 1));
              *hr2 = __halves2half2(
                  input.m_impl.coeff((row + 1) * num_coeffs_to_reduce + col),
                  input.m_impl.coeff((row + 1) * num_coeffs_to_reduce + col +
                                     1));
              hr1++;
              hr2++;
              col += 2;
            }
            if (col < num_coeffs_to_reduce) {
              // Peel;
              const half last1 =
                  input.m_impl.coeff(row * num_coeffs_to_reduce + col);
              *hr1 = __halves2half2(last1, reducer.initialize());
              const half last2 =
                  input.m_impl.coeff((row + 1) * num_coeffs_to_reduce + col);
              *hr2 = __halves2half2(last2, reducer.initialize());
            }
            reducer.reducePacket(r1, &reduced_val1);
            reducer.reducePacket(r2, &reduced_val2);
          }
          break;
        } else {
          // Faster version of the loop with no branches after unrolling.
#pragma unroll
          for (int k = 0; k < unroll_times; ++k) {
            const Index col = col_begin + blockDim.x * (j + k) * packet_width;
            reducer.reducePacket(input.m_impl.template packet<Unaligned>(
                                     row * num_coeffs_to_reduce + col),
                                 &reduced_val1);
            reducer.reducePacket(input.m_impl.template packet<Unaligned>(
                                     (row + 1) * num_coeffs_to_reduce + col),
                                 &reduced_val2);
          }
        }
      }

#pragma unroll
      for (int offset = warpSize/2; offset > 0; offset /= 2) {
      #if defined(EIGEN_HIPCC)
        PacketType r1;
        PacketType r2;
        half2* hr1 = reinterpret_cast<half2*>(&r1);
        half2* hr2 = reinterpret_cast<half2*>(&r2);
        half2* rv1 = reinterpret_cast<half2*>(&reduced_val1);
        half2* rv2 = reinterpret_cast<half2*>(&reduced_val2);
        for (int i = 0; i < packet_width / 2; i++) {
	  // FIXME : remove this workaround once we have native half/half2 support for __shfl_down
	  union { int i; half2 h; } wka_in1, wka_out1;
	  wka_in1.h = rv1[i];
	  wka_out1.i = __shfl_down(wka_in1.i, offset, warpSize);
	  hr1[i] = wka_out1.h;

	  union { int i; half2 h; } wka_in2, wka_out2;
	  wka_in2.h = rv2[i];
	  wka_out2.i = __shfl_down(wka_in2.i, offset, warpSize);
	  hr2[i] = wka_out2.h;
        }
        reducer.reducePacket(r1, &reduced_val1);
        reducer.reducePacket(r2, &reduced_val2);
      #elif defined(EIGEN_CUDA_SDK_VER) && EIGEN_CUDA_SDK_VER < 90000
        PacketType r1;
        PacketType r2;
        half2* hr1 = reinterpret_cast<half2*>(&r1);
        half2* hr2 = reinterpret_cast<half2*>(&r2);
        half2* rv1 = reinterpret_cast<half2*>(&reduced_val1);
        half2* rv2 = reinterpret_cast<half2*>(&reduced_val2);
        for (int i = 0; i < packet_width / 2; i++) {
          hr1[i] = __shfl_down(rv1[i], offset, warpSize);
          hr2[i] = __shfl_down(rv2[i], offset, warpSize);
        }
        reducer.reducePacket(r1, &reduced_val1);
        reducer.reducePacket(r2, &reduced_val2);
      #else
        PacketType r1;
        PacketType r2;
        half2* hr1 = reinterpret_cast<half2*>(&r1);
        half2* hr2 = reinterpret_cast<half2*>(&r2);
        half2* rr1 = reinterpret_cast<half2*>(&reduced_val1);
        half2* rr2 = reinterpret_cast<half2*>(&reduced_val2);
        for (int i = 0; i < packet_width / 2; i++) {
          hr1[i] =
              __shfl_down_sync(0xFFFFFFFF, rr1[i], (unsigned)offset, warpSize);
          hr2[i] =
              __shfl_down_sync(0xFFFFFFFF, rr2[i], (unsigned)offset, warpSize);
        }
        reducer.reducePacket(r1, &reduced_val1);
        reducer.reducePacket(r2, &reduced_val2);

      #endif
      }
      half2* rv1 = reinterpret_cast<half2*>(&reduced_val1);
      half2* rv2 = reinterpret_cast<half2*>(&reduced_val2);
      half2 val;
      if (packet_width > 2) {
        reducer.reducePacket(rv1[2], rv1);
        reducer.reducePacket(rv1[3], rv1 + 1);
        reducer.reducePacket(rv1[1], rv1);
        reducer.reducePacket(rv2[2], rv2);
        reducer.reducePacket(rv2[3], rv2 + 1);
        reducer.reducePacket(rv2[1], rv2);
      }
      half val1 = __low2half(*rv1);
      reducer.reduce(__high2half(*rv1), &val1);
      half val2 = __low2half(*rv2);
      reducer.reduce(__high2half(*rv2), &val2);
      val = __halves2half2(val1, val2);
      if ((threadIdx.x & (warpSize - 1)) == 0) {
        half* loc = output + row;
        atomicReduce((half2*)loc, val, reducer);
      }
    }
  }
}

#endif // EIGEN_HAS_GPU_FP16

template <typename Self, typename Op, typename OutputType, bool PacketAccess, typename Enabled = void>
struct InnerReductionLauncher {
  static EIGEN_DEVICE_FUNC bool run(const Self&, Op&, const GpuDevice&, OutputType*, typename Self::Index, typename Self::Index) {
    gpu_assert(false && "Should only be called to reduce doubles, floats and half floats on a gpu device");
    return true;
  }
};

// Specialization for float and double
template <typename Self, typename Op, typename OutputType, bool PacketAccess>
struct InnerReductionLauncher<
  Self, Op, OutputType, PacketAccess,
  typename internal::enable_if<
    internal::is_same<float, OutputType>::value ||
    internal::is_same<double, OutputType>::value,
  void>::type> {
  static bool run(const Self& self, Op& reducer, const GpuDevice& device, OutputType* output, typename Self::Index num_coeffs_to_reduce, typename Self::Index num_preserved_vals) {
    typedef typename Self::Index Index;

    const Index num_coeffs = num_coeffs_to_reduce * num_preserved_vals;
    const int block_size = 256;
    const int num_per_thread = 128;
    const int dyn_blocks = divup<int>(num_coeffs, block_size * num_per_thread);
    const int max_blocks = device.getNumGpuMultiProcessors() *
                           device.maxGpuThreadsPerMultiProcessor() / block_size;
    const int num_blocks = numext::mini<int>(max_blocks, dyn_blocks);

    if (num_blocks > 1) {
      // We initialize the outputs outside the reduction kernel when we can't be sure that there
      // won't be a race conditions between multiple thread blocks.
      const int dyn_blocks = divup<int>(num_preserved_vals, 1024);
      const int max_blocks = device.getNumGpuMultiProcessors() *
                           device.maxGpuThreadsPerMultiProcessor() / 1024;
      const int num_blocks = numext::mini<int>(max_blocks, dyn_blocks);
      LAUNCH_GPU_KERNEL((ReductionInitKernel<OutputType, Index>),
                         num_blocks, 1024, 0, device, reducer.initialize(),
                         num_preserved_vals, output);
    }

    LAUNCH_GPU_KERNEL((InnerReductionKernel<num_per_thread, Self, Op, Index>),
                       num_blocks, block_size, 0, device, reducer, self, num_coeffs_to_reduce, num_preserved_vals, output);

    return false;
  }
};

#ifdef EIGEN_HAS_GPU_FP16
template <typename Self, typename Op>
struct InnerReductionLauncher<Self, Op, Eigen::half, false> {
  static bool run(const Self&, Op&, const GpuDevice&, half*, typename Self::Index, typename Self::Index) {
    gpu_assert(false && "Should not be called since there is no packet accessor");
    return true;
  }
};

template <typename Self, typename Op>
struct InnerReductionLauncher<Self, Op, Eigen::half, true> {
  static bool run(const Self& self, Op& reducer, const GpuDevice& device, half* output, typename Self::Index num_coeffs_to_reduce, typename Self::Index num_preserved_vals) {
    typedef typename Self::Index Index;

    if (num_preserved_vals % 2 != 0) {
      // Not supported yet, revert to the slower code path
      return true;
    }

    const Index num_coeffs = num_coeffs_to_reduce * num_preserved_vals;
    const int block_size = /*256*/128;
    const int num_per_thread = /*128*/64;
    const int dyn_blocks = divup<int>(num_coeffs, block_size * num_per_thread);
    const int max_blocks = device.getNumGpuMultiProcessors() *
                           device.maxGpuThreadsPerMultiProcessor() / block_size;
    const int num_blocks = numext::mini<int>(max_blocks, dyn_blocks);

    if (num_blocks > 1) {
      // We initialize the outputs outside the reduction kernel when we can't be sure that there
      // won't be a race conditions between multiple thread blocks.
      LAUNCH_GPU_KERNEL((ReductionInitKernelHalfFloat<Self, Op, Index>),
                         1, 1, 0, device, reducer, self, num_preserved_vals, output);
    }

    LAUNCH_GPU_KERNEL((InnerReductionKernelHalfFloat<num_per_thread, Self, Op, Index>),
                       num_blocks, block_size, 0, device, reducer, self, num_coeffs_to_reduce, num_preserved_vals, output);

    return false;
  }
};
#endif // EIGEN_HAS_GPU_FP16


template <typename Self, typename Op>
struct InnerReducer<Self, Op, GpuDevice> {
  // Unfortunately nvidia doesn't support well exotic types such as complex,
  // so reduce the scope of the optimized version of the code to the simple case
  // of floats and half floats.
#ifdef EIGEN_HAS_GPU_FP16
  static const bool HasOptimizedImplementation = !Self::ReducerTraits::IsStateful &&
      (internal::is_same<typename Self::CoeffReturnType, float>::value ||
       internal::is_same<typename Self::CoeffReturnType, double>::value ||
       (internal::is_same<typename Self::CoeffReturnType, Eigen::half>::value && reducer_traits<Op, GpuDevice>::PacketAccess));
#else // EIGEN_HAS_GPU_FP16
  static const bool HasOptimizedImplementation = !Self::ReducerTraits::IsStateful &&
                                                 (internal::is_same<typename Self::CoeffReturnType, float>::value ||
                                                  internal::is_same<typename Self::CoeffReturnType, double>::value);
#endif // EIGEN_HAS_GPU_FP16

  template <typename OutputType>
  static bool run(const Self& self, Op& reducer, const GpuDevice& device, OutputType* output, typename Self::Index num_coeffs_to_reduce, typename Self::Index num_preserved_vals) {
    gpu_assert(HasOptimizedImplementation && "Should only be called on doubles, floats or half floats");
    const Index num_coeffs = array_prod(self.m_impl.dimensions());
    // Don't crash when we're called with an input tensor of size 0.
    if (num_coeffs == 0) {
      return true;
    }
    // It's faster to use the usual code.
    if (num_coeffs_to_reduce <= 128) {
      return true;
    }

    return InnerReductionLauncher<Self, Op, OutputType, reducer_traits<Op, GpuDevice>::PacketAccess>::run(self, reducer, device, output, num_coeffs_to_reduce, num_preserved_vals);
  }
};

template <int NumPerThread, typename Self,
          typename Reducer, typename Index>
__global__ void OuterReductionKernel(Reducer reducer, const Self input, Index num_coeffs_to_reduce, Index num_preserved_coeffs,
                                     typename Self::CoeffReturnType* output) {
  const Index num_threads = blockDim.x * gridDim.x;
  const Index thread_id = blockIdx.x * blockDim.x + threadIdx.x;
  // Initialize the output values if they weren't initialized by the ReductionInitKernel
  if (gridDim.x == 1) {
    for (Index i = thread_id; i < num_preserved_coeffs; i += num_threads) {
      output[i] = reducer.initialize();
    }
    __syncthreads();
  }

  // Do the reduction.
  const Index max_iter = num_preserved_coeffs * divup<Index>(num_coeffs_to_reduce, NumPerThread);
  for (Index i = thread_id; i < max_iter; i += num_threads) {
    const Index input_col = i % num_preserved_coeffs;
    const Index input_row = (i / num_preserved_coeffs) * NumPerThread;
    typename Self::CoeffReturnType reduced_val = reducer.initialize();
    const Index max_row = numext::mini(input_row + NumPerThread, num_coeffs_to_reduce);
    for (Index j = input_row; j < max_row; j++) {
      typename Self::CoeffReturnType val = input.m_impl.coeff(j * num_preserved_coeffs + input_col);
      reducer.reduce(val, &reduced_val);
    }
    atomicReduce(&(output[input_col]), reduced_val, reducer);
  }
}


template <typename Self, typename Op>
struct OuterReducer<Self, Op, GpuDevice> {
  // Unfortunately nvidia doesn't support well exotic types such as complex,
  // so reduce the scope of the optimized version of the code to the simple case
  // of floats.
  static const bool HasOptimizedImplementation = !Self::ReducerTraits::IsStateful &&
                                                 (internal::is_same<typename Self::CoeffReturnType, float>::value ||
                                                  internal::is_same<typename Self::CoeffReturnType, double>::value);
  template <typename Device, typename OutputType>
  static
    #if !defined(EIGEN_HIPCC)
    // FIXME :  leaving this EIGEN_DEVICE_FUNC in, results in the following runtime error
    //          (in the cxx11_tensor_reduction_gpu test)
    //
    // terminate called after throwing an instance of 'std::runtime_error'
    //   what():  No device code available for function: _ZN5Eigen8internal20OuterReductionKernelIL...
    //
    // don't know why this happens (and why is it a runtime error instead of a compile time error)
    //
    // this will be fixed by HIP PR#457
    EIGEN_DEVICE_FUNC
    #endif
    bool run(const Self&, Op&, const Device&, OutputType*, typename Self::Index, typename Self::Index) {
    gpu_assert(false && "Should only be called to reduce doubles or floats on a gpu device");
    return true;
  }

  static bool run(const Self& self, Op& reducer, const GpuDevice& device, float* output, typename Self::Index num_coeffs_to_reduce, typename Self::Index num_preserved_vals) {
    typedef typename Self::Index Index;

    // It's faster to use the usual code.
    if (num_coeffs_to_reduce <= 32) {
      return true;
    }

    const Index num_coeffs = num_coeffs_to_reduce * num_preserved_vals;
    const int block_size = 256;
    const int num_per_thread = 16;
    const int dyn_blocks = divup<int>(num_coeffs, block_size * num_per_thread);
    const int max_blocks = device.getNumGpuMultiProcessors() *
                           device.maxGpuThreadsPerMultiProcessor() / block_size;
    const int num_blocks = numext::mini<int>(max_blocks, dyn_blocks);

    if (num_blocks > 1) {
      // We initialize the outputs in the reduction kernel itself when we don't have to worry
      // about race conditions between multiple thread blocks.
      const int dyn_blocks = divup<int>(num_preserved_vals, 1024);
      const int max_blocks = device.getNumGpuMultiProcessors() *
                             device.maxGpuThreadsPerMultiProcessor() / 1024;
      const int num_blocks = numext::mini<int>(max_blocks, dyn_blocks);
      LAUNCH_GPU_KERNEL((ReductionInitKernel<float, Index>),
                         num_blocks, 1024, 0, device, reducer.initialize(),
                         num_preserved_vals, output);
    }

    LAUNCH_GPU_KERNEL((OuterReductionKernel<num_per_thread, Self, Op, Index>),
                       num_blocks, block_size, 0, device, reducer, self, num_coeffs_to_reduce, num_preserved_vals, output);

    return false;
  }
  static bool run(const Self& self, Op& reducer, const GpuDevice& device, double* output, typename Self::Index num_coeffs_to_reduce, typename Self::Index num_preserved_vals) {
    typedef typename Self::Index Index;

    if (num_coeffs_to_reduce <= 32) {
      return true;
    }

    const Index num_coeffs = num_coeffs_to_reduce * num_preserved_vals;
    const int block_size = 256;
    const int num_per_thread = 16;
    const int dyn_blocks = divup<int>(num_coeffs, block_size * num_per_thread);
    const int max_blocks = device.getNumGpuMultiProcessors() *
                           device.maxGpuThreadsPerMultiProcessor() / block_size;
    const int num_blocks = numext::mini<int>(max_blocks, dyn_blocks);

    if (num_blocks > 1) {
      const int dyn_blocks = divup<int>(num_preserved_vals, 1024);
      const int max_blocks = device.getNumGpuMultiProcessors() *
                             device.maxGpuThreadsPerMultiProcessor() / 1024;
      const int num_blocks = numext::mini<int>(max_blocks, dyn_blocks);
      LAUNCH_GPU_KERNEL((ReductionInitKernel<double, Index>),
                         num_blocks, 1024, 0, device, reducer.initialize(),
                         num_preserved_vals, output);
    }

    LAUNCH_GPU_KERNEL((OuterReductionKernel<num_per_thread, Self, Op, Index>),
                       num_blocks, block_size, 0, device, reducer, self, num_coeffs_to_reduce, num_preserved_vals, output);

    return false;
  }
};

#endif // defined(EIGEN_USE_GPU) && defined(EIGEN_GPUCC)

} // end namespace internal
} // end namespace Eigen

#endif // EIGEN_CXX11_TENSOR_TENSOR_REDUCTION_GPU_H
// clang-format on