overlap_add_op.h 11.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/operators/math/seq2col.h"
#include "paddle/fluid/operators/transpose_op.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/for_range.h"
25
#include "paddle/pten/kernels/funcs/math_function.h"
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82

namespace paddle {
namespace operators {
using Tensor = framework::Tensor;

template <typename DeviceContext, typename T>
struct OverlapAddFunctor {
  void operator()(const DeviceContext& dev_ctx, const Tensor* input,
                  Tensor* output, size_t seq_length, size_t frame_length,
                  size_t n_frames, size_t hop_length,
                  bool is_grad = false) const {
    auto numel = output->numel();
    const auto* input_data = input->data<T>();
    auto* output_data = output->data<T>();

    platform::ForRange<DeviceContext> for_range(dev_ctx, numel);
    if (!is_grad) {
      math::Col2SeqFunctor<T> functor(input_data, output_data, seq_length,
                                      frame_length, n_frames, hop_length);
      for_range(functor);
    } else {
      math::Seq2ColFunctor<T> functor(input_data, output_data, seq_length,
                                      frame_length, n_frames, hop_length);
      for_range(functor);
    }
  }
};

template <typename DeviceContext, typename T>
class OverlapAddKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const {
    const Tensor* x = ctx.Input<Tensor>("X");
    Tensor* out = ctx.Output<Tensor>("Out");
    out->mutable_data<T>(ctx.GetPlace());
    const size_t x_rank = x->dims().size();
    const size_t out_rank = out->dims().size();

    const int hop_length = ctx.Attr<int>("hop_length");
    const int axis = ctx.Attr<int>("axis");
    const int n_frames = (axis == 0) ? x->dims()[0] : x->dims()[x_rank - 1];
    const int frame_length = (axis == 0) ? x->dims()[1] : x->dims()[x_rank - 2];
    const int seq_length =
        (axis == 0) ? out->dims()[0] : out->dims()[out_rank - 1];

    auto& dev_ctx = ctx.device_context<DeviceContext>();

    Tensor x_(x->type());
    x_ = *x;

    framework::DDim preserved_dims;
    if (out_rank > 2) {
      // Save dims used to flatten both input and output tensors and restore
      // output tensor.
      framework::DDim x_resized_dims;
      framework::DDim out_resized_dims;
      if (axis == 0) {
83
        preserved_dims = pten::slice_ddim(out->dims(), 1, out_rank);
84
        x_resized_dims = {n_frames, frame_length,
85 86
                          pten::product(preserved_dims)};
        out_resized_dims = {seq_length, pten::product(preserved_dims)};
87
      } else {
88 89
        preserved_dims = pten::slice_ddim(out->dims(), 0, out_rank - 1);
        x_resized_dims = {pten::product(preserved_dims), frame_length,
90
                          n_frames};
91
        out_resized_dims = {pten::product(preserved_dims), seq_length};
92 93 94 95 96 97 98 99 100 101 102 103 104 105
      }
      x_.Resize(x_resized_dims);
      out->Resize(out_resized_dims);
    }

    Tensor trans_x(x_.type());
    Tensor trans_out(out->type());

    // Transpose input and output in case that axis is 0.
    if (axis == 0) {
      if (out_rank == 1U) {
        trans_out = *out;

        std::vector<int> perm_x{1, 0};
106
        auto x_dims_vec = pten::vectorize(x_.dims());
107 108 109
        for (int i = 0; i < x_.dims().size(); ++i) {
          x_dims_vec[i] = x_.dims()[perm_x[i]];
        }
110
        trans_x.Resize(pten::make_ddim(x_dims_vec));
111 112 113 114 115
        trans_x.mutable_data<T>(ctx.GetPlace());
        TransCompute<DeviceContext, T>(perm_x.size(), dev_ctx, x_, &trans_x,
                                       perm_x);
      } else {
        std::vector<int> perm_out{1, 0};
116
        auto out_dims_vec = pten::vectorize(out->dims());
117 118 119
        for (int i = 0; i < out->dims().size(); ++i) {
          out_dims_vec[i] = out->dims()[perm_out[i]];
        }
120
        trans_out.Resize(pten::make_ddim(out_dims_vec));
121 122 123 124 125
        trans_out.mutable_data<T>(ctx.GetPlace());
        TransCompute<DeviceContext, T>(perm_out.size(), dev_ctx, *out,
                                       &trans_out, perm_out);

        std::vector<int> perm_x{2, 1, 0};
126
        auto x_dims_vec = pten::vectorize(x_.dims());
127 128 129
        for (int i = 0; i < x_.dims().size(); ++i) {
          x_dims_vec[i] = x_.dims()[perm_x[i]];
        }
130
        trans_x.Resize(pten::make_ddim(x_dims_vec));
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
        trans_x.mutable_data<T>(ctx.GetPlace());
        TransCompute<DeviceContext, T>(perm_x.size(), dev_ctx, x_, &trans_x,
                                       perm_x);
      }
    } else {
      trans_x = x_;
      trans_out = *out;
    }

    OverlapAddFunctor<DeviceContext, T>()(dev_ctx, &trans_x, &trans_out,
                                          seq_length, frame_length, n_frames,
                                          hop_length, /*is_grad*/ false);

    // Transpose output in case axis is 0.
    if (axis == 0 && out_rank > 1U) {
      std::vector<int> perm_out{1, 0};
      TransCompute<DeviceContext, T>(perm_out.size(), dev_ctx, trans_out, out,
                                     perm_out);
    }

    // Restore output dims when the number of dims is larger than 2.
    if (out_rank > 2) {
      std::vector<int64_t> restored_out_shape;
      for (int i = 0; i < preserved_dims.size(); i++) {
        restored_out_shape.push_back(preserved_dims[i]);
      }

      if (axis == 0) {
        // (seq_length, ...)
        restored_out_shape.insert(restored_out_shape.begin(), seq_length);
      } else {
        // (..., seq_length)
        restored_out_shape.push_back(seq_length);
      }

166
      out->Resize(pten::make_ddim(restored_out_shape));
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
    }
  }
};

template <typename DeviceContext, typename T>
class OverlapAddGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    const Tensor* d_out = ctx.Input<Tensor>(framework::GradVarName("Out"));
    Tensor* d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
    d_x->mutable_data<T>(ctx.GetPlace());
    const size_t d_out_rank = d_out->dims().size();
    const size_t d_x_rank = d_x->dims().size();

    const int hop_length = ctx.Attr<int>("hop_length");
    const int axis = ctx.Attr<int>("axis");
    const int n_frames =
        (axis == 0) ? d_x->dims()[0] : d_x->dims()[d_x_rank - 1];
    const int frame_length =
        (axis == 0) ? d_x->dims()[1] : d_x->dims()[d_x_rank - 2];
    const int seq_length =
        (axis == 0) ? d_out->dims()[0] : d_out->dims()[d_out_rank - 1];

    auto& dev_ctx = ctx.device_context<DeviceContext>();

    // When the number of input dims is larger than 2, it needs to copy
    // from x to resize input into 2d and output into 3d. Morevoer, output
    // dims will be restored at the last step.
    Tensor d_out_(d_out->type());
    d_out_ = *d_out;

    framework::DDim preserved_dims;
    if (d_out_rank > 2) {
      // Save dims used to flatten both input and output tensors and restore
      // output tensor.
      framework::DDim d_x_resized_dims;
      framework::DDim d_out_resized_dims;
      if (axis == 0) {
205
        preserved_dims = pten::slice_ddim(d_out_.dims(), 1, d_out_rank);
206
        d_x_resized_dims = {n_frames, frame_length,
207 208
                            pten::product(preserved_dims)};
        d_out_resized_dims = {seq_length, pten::product(preserved_dims)};
209
      } else {
210 211
        preserved_dims = pten::slice_ddim(d_out_.dims(), 0, d_out_rank - 1);
        d_x_resized_dims = {pten::product(preserved_dims), frame_length,
212
                            n_frames};
213
        d_out_resized_dims = {pten::product(preserved_dims), seq_length};
214 215 216 217 218 219 220 221 222 223 224 225 226 227
      }
      d_x->Resize(d_x_resized_dims);
      d_out_.Resize(d_out_resized_dims);
    }

    Tensor trans_d_x(d_x->type());
    Tensor trans_d_out(d_out_.type());

    // Transpose input and output in case that axis is 0.
    if (axis == 0) {
      if (d_out_rank == 1U) {
        trans_d_out = d_out_;

        std::vector<int> perm_d_x{1, 0};
228
        auto d_x_dims_vec = pten::vectorize(d_x->dims());
229 230 231
        for (int i = 0; i < d_x->dims().size(); ++i) {
          d_x_dims_vec[i] = d_x->dims()[perm_d_x[i]];
        }
232
        trans_d_x.Resize(pten::make_ddim(d_x_dims_vec));
233 234 235 236 237
        trans_d_x.mutable_data<T>(ctx.GetPlace());
        TransCompute<DeviceContext, T>(perm_d_x.size(), dev_ctx, *d_x,
                                       &trans_d_x, perm_d_x);
      } else {
        std::vector<int> perm_d_out{1, 0};
238
        auto d_out_dims_vec = pten::vectorize(d_out_.dims());
239 240 241
        for (int i = 0; i < d_out_.dims().size(); ++i) {
          d_out_dims_vec[i] = d_out_.dims()[perm_d_out[i]];
        }
242
        trans_d_out.Resize(pten::make_ddim(d_out_dims_vec));
243 244 245 246 247
        trans_d_out.mutable_data<T>(ctx.GetPlace());
        TransCompute<DeviceContext, T>(perm_d_out.size(), dev_ctx, d_out_,
                                       &trans_d_out, perm_d_out);

        std::vector<int> perm_d_x{2, 1, 0};
248
        auto d_x_dims_vec = pten::vectorize(d_x->dims());
249 250 251
        for (int i = 0; i < d_x->dims().size(); ++i) {
          d_x_dims_vec[i] = d_x->dims()[perm_d_x[i]];
        }
252
        trans_d_x.Resize(pten::make_ddim(d_x_dims_vec));
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
        trans_d_x.mutable_data<T>(ctx.GetPlace());
        TransCompute<DeviceContext, T>(perm_d_x.size(), dev_ctx, *d_x,
                                       &trans_d_x, perm_d_x);
      }
    } else {
      trans_d_x = *d_x;
      trans_d_out = d_out_;
    }

    OverlapAddFunctor<DeviceContext, T>()(dev_ctx, &trans_d_out, &trans_d_x,
                                          seq_length, frame_length, n_frames,
                                          hop_length,
                                          /*is_grad*/ true);

    // Transpose output in case axis is 0.
    if (axis == 0) {
      if (d_out_rank == 1U) {
        std::vector<int> perm_d_x{1, 0};
        TransCompute<DeviceContext, T>(perm_d_x.size(), dev_ctx, trans_d_x, d_x,
                                       perm_d_x);
      } else {
        std::vector<int> perm_d_x{2, 1, 0};
        TransCompute<DeviceContext, T>(perm_d_x.size(), dev_ctx, trans_d_x, d_x,
                                       perm_d_x);
      }
    }

    // Restore output dims when the number of dims is larger than 2.
    if (d_out_rank > 2) {
      std::vector<int64_t> restored_d_x_shape;
      for (int i = 0; i < preserved_dims.size(); i++) {
        restored_d_x_shape.push_back(preserved_dims[i]);
      }

      if (axis == 0) {
        // (n_frames, frame_length, ...)
        restored_d_x_shape.insert(restored_d_x_shape.begin(), frame_length);
        restored_d_x_shape.insert(restored_d_x_shape.begin(), n_frames);
      } else {
        // (..., frame_length, n_frames)
        restored_d_x_shape.push_back(frame_length);
        restored_d_x_shape.push_back(n_frames);
      }

297
      d_x->Resize(pten::make_ddim(restored_d_x_shape));
298 299 300 301 302 303
    }
  }
};

}  // namespace operators
}  // namespace paddle