index_select_op.cc 6.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/operators/index_select_op.h"
#include <memory>

namespace paddle {
namespace operators {

using framework::Tensor;

class IndexSelectOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
                      platform::errors::InvalidArgument(
                          "Input(X) of IndexSelectOp should not be null."));
    PADDLE_ENFORCE_EQ(ctx->HasInput("Index"), true,
                      platform::errors::InvalidArgument(
                          "Input(Index) of IndexSelectOp should not be null."));
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
                      platform::errors::InvalidArgument(
                          "Output(Out) of IndexSelectOp should not be null."));

    auto input_dim = ctx->GetInputDim("X");
    auto index_dim = ctx->GetInputDim("Index");
    auto dim = ctx->Attrs().Get<int>("dim");

    PADDLE_ENFORCE_EQ(
        dim < input_dim.size() && dim >= (0 - input_dim.size()), true,
        platform::errors::OutOfRange(
            "Attr(dim) is out of range, It's expected "
            "to be in range of [-%d, %d]. But received Attr(dim) = %d.",
            input_dim.size(), input_dim.size() - 1, dim));

    PADDLE_ENFORCE_EQ(
        index_dim.size() == 1 || (index_dim.size() == 2 && index_dim[1] == 1),
        true, platform::errors::InvalidArgument(
                  "The 'shape' of Input(Index) must be 1-D tensor. "
                  "But received: the 'shape' of Input(Index) is [%s], "
                  "the dimension of Input(Index) is [%d].",
                  index_dim, index_dim.size()));

Z
zyfncg 已提交
57 58 59 60
    PADDLE_ENFORCE_EQ(index_dim[0] != 0, true,
                      platform::errors::InvalidArgument(
                          "The length of Input(Index) can't be 0."));

61
    auto output_dim = pten::vectorize(input_dim);
62 63 64 65
    if (dim < 0) {
      dim += input_dim.size();
    }
    output_dim[dim] = index_dim[0];
66
    ctx->SetOutputDim("Out", pten::make_ddim(output_dim));
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
    auto type = ctx->GetInputsVarType("X")[0];
    if (type == framework::proto::VarType::LOD_TENSOR) {
      ctx->ShareLoD("X", /*->*/ "Out");
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
    return framework::OpKernelType(data_type, ctx.device_context());
  }
};

class IndexSelectGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("Index"), true,
        platform::errors::InvalidArgument("Input(Index) should be not null."));
    PADDLE_ENFORCE_EQ(ctx->HasInput(framework::GradVarName("Out")), true,
                      platform::errors::InvalidArgument(
                          "Input(Out@GRAD) should be not null."));
    PADDLE_ENFORCE_EQ(ctx->HasOutput(framework::GradVarName("X")), true,
                      platform::errors::InvalidArgument(
                          "Output(X@GRAD) should be not null."));

    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.device_context());
  }
};

class IndexSelectOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "(Tensor) the input tensor.");
    AddInput("Index", "the 1-D tensor containing the indices to index.");
    AddOutput("Out", "the output tensor.");
    AddAttr<int>("dim", "the dimension in which we index.").SetDefault(0);
    AddComment(R"DOC(
    Returns a new tensor which indexes the input tensor
    along dimension dim using the entries in index which
    is a Tensor.

    The returned tensor has the same number of dimensions
    as the original tensor (input). The dim-th dimension
    has the same size as the length of index; other dimensions
    have the same size as in the original tensor.
    )DOC");
  }
};

template <typename T>
class IndexSelectGradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("index_select_grad");

    op->SetInput("X", this->Input("X"));
    op->SetInput("Index", this->Input("Index"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
  }
};

145
DECLARE_NO_NEED_BUFFER_VARS_INFERER(IndexSelectGradNoNeedBufferVarsInferer,
146 147 148 149 150 151 152 153 154
                                    "X");
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(index_select, ops::IndexSelectOp, ops::IndexSelectOpMaker,
                  ops::IndexSelectGradMaker<paddle::framework::OpDesc>,
                  ops::IndexSelectGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(index_select_grad, ops::IndexSelectGradOp,
155
                  ops::IndexSelectGradNoNeedBufferVarsInferer);
156 157 158 159 160 161 162 163 164 165 166 167
REGISTER_OP_CPU_KERNEL(
    index_select,
    ops::IndexSelectKernel<paddle::platform::CPUDeviceContext, float>,
    ops::IndexSelectKernel<paddle::platform::CPUDeviceContext, double>,
    ops::IndexSelectKernel<paddle::platform::CPUDeviceContext, int>,
    ops::IndexSelectKernel<paddle::platform::CPUDeviceContext, int64_t>);
REGISTER_OP_CPU_KERNEL(
    index_select_grad,
    ops::IndexSelectGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::IndexSelectGradKernel<paddle::platform::CPUDeviceContext, double>,
    ops::IndexSelectGradKernel<paddle::platform::CPUDeviceContext, int>,
    ops::IndexSelectGradKernel<paddle::platform::CPUDeviceContext, int64_t>);