prior_box_op.h 7.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
W
wanghaox 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
16 17
#include <algorithm>
#include <vector>
Y
Yi Wang 已提交
18 19
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/transform.h"
20
#include "paddle/pten/kernels/funcs/math_function.h"
W
wanghaox 已提交
21 22 23 24

namespace paddle {
namespace operators {

25 26 27
constexpr int kPriorBoxFLOAT = 1;
constexpr int kPriorBoxDOUBLE = 2;

W
wanghaox 已提交
28 29
inline void ExpandAspectRatios(const std::vector<float>& input_aspect_ratior,
                               bool flip,
30
                               std::vector<float>* output_aspect_ratior) {
31
  constexpr float epsilon = 1e-6;
32 33
  output_aspect_ratior->clear();
  output_aspect_ratior->push_back(1.0f);
W
wanghaox 已提交
34 35 36
  for (size_t i = 0; i < input_aspect_ratior.size(); ++i) {
    float ar = input_aspect_ratior[i];
    bool already_exist = false;
37 38
    for (size_t j = 0; j < output_aspect_ratior->size(); ++j) {
      if (fabs(ar - output_aspect_ratior->at(j)) < epsilon) {
W
wanghaox 已提交
39 40 41 42 43
        already_exist = true;
        break;
      }
    }
    if (!already_exist) {
44
      output_aspect_ratior->push_back(ar);
W
wanghaox 已提交
45
      if (flip) {
46
        output_aspect_ratior->push_back(1.0f / ar);
W
wanghaox 已提交
47 48 49 50 51
      }
    }
  }
}

52
template <typename T, typename K>
W
wanghaox 已提交
53 54 55 56 57
class PriorBoxOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input = ctx.Input<paddle::framework::Tensor>("Input");
    auto* image = ctx.Input<paddle::framework::Tensor>("Image");
W
wanghaox 已提交
58 59
    auto* boxes = ctx.Output<paddle::framework::Tensor>("Boxes");
    auto* vars = ctx.Output<paddle::framework::Tensor>("Variances");
W
wanghaox 已提交
60

C
chengduoZH 已提交
61 62
    auto min_sizes = ctx.Attr<std::vector<float>>("min_sizes");
    auto max_sizes = ctx.Attr<std::vector<float>>("max_sizes");
W
wanghaox 已提交
63 64 65 66
    auto input_aspect_ratio = ctx.Attr<std::vector<float>>("aspect_ratios");
    auto variances = ctx.Attr<std::vector<float>>("variances");
    auto flip = ctx.Attr<bool>("flip");
    auto clip = ctx.Attr<bool>("clip");
67 68
    auto min_max_aspect_ratios_order =
        ctx.Attr<bool>("min_max_aspect_ratios_order");
W
wanghaox 已提交
69 70

    std::vector<float> aspect_ratios;
71
    ExpandAspectRatios(input_aspect_ratio, flip, &aspect_ratios);
W
wanghaox 已提交
72

73 74 75
    K step_w = static_cast<K>(ctx.Attr<float>("step_w"));
    K step_h = static_cast<K>(ctx.Attr<float>("step_h"));
    K offset = static_cast<K>(ctx.Attr<float>("offset"));
W
wanghaox 已提交
76

W
wanghaox 已提交
77 78
    auto img_width = image->dims()[3];
    auto img_height = image->dims()[2];
W
wanghaox 已提交
79

W
wanghaox 已提交
80 81
    auto feature_width = input->dims()[3];
    auto feature_height = input->dims()[2];
W
wanghaox 已提交
82

83
    K step_width, step_height;
W
wanghaox 已提交
84
    if (step_w == 0 || step_h == 0) {
85 86
      step_width = static_cast<K>(img_width) / feature_width;
      step_height = static_cast<K>(img_height) / feature_height;
W
wanghaox 已提交
87 88 89 90 91 92 93 94 95 96
    } else {
      step_width = step_w;
      step_height = step_h;
    }

    int num_priors = aspect_ratios.size() * min_sizes.size();
    if (max_sizes.size() > 0) {
      num_priors += max_sizes.size();
    }

97 98
    boxes->mutable_data<K>(ctx.GetPlace());
    vars->mutable_data<K>(ctx.GetPlace());
W
wanghaox 已提交
99

100
    K* b_t = boxes->data<K>();
W
wanghaox 已提交
101 102
    for (int h = 0; h < feature_height; ++h) {
      for (int w = 0; w < feature_width; ++w) {
103 104 105
        K center_x = (w + offset) * step_width;
        K center_y = (h + offset) * step_height;
        K box_width, box_height;
W
wanghaox 已提交
106
        for (size_t s = 0; s < min_sizes.size(); ++s) {
C
chengduoZH 已提交
107
          auto min_size = min_sizes[s];
108 109
          if (min_max_aspect_ratios_order) {
            box_width = box_height = min_size / 2.;
110 111 112 113 114
            b_t[0] = (center_x - box_width) / img_width;
            b_t[1] = (center_y - box_height) / img_height;
            b_t[2] = (center_x + box_width) / img_width;
            b_t[3] = (center_y + box_height) / img_height;
            b_t += 4;
115 116 117 118
            if (max_sizes.size() > 0) {
              auto max_size = max_sizes[s];
              // square prior with size sqrt(minSize * maxSize)
              box_width = box_height = sqrt(min_size * max_size) / 2.;
119 120 121 122 123
              b_t[0] = (center_x - box_width) / img_width;
              b_t[1] = (center_y - box_height) / img_height;
              b_t[2] = (center_x + box_width) / img_width;
              b_t[3] = (center_y + box_height) / img_height;
              b_t += 4;
124 125 126 127 128 129 130 131 132
            }
            // priors with different aspect ratios
            for (size_t r = 0; r < aspect_ratios.size(); ++r) {
              float ar = aspect_ratios[r];
              if (fabs(ar - 1.) < 1e-6) {
                continue;
              }
              box_width = min_size * sqrt(ar) / 2.;
              box_height = min_size / sqrt(ar) / 2.;
133 134 135 136 137
              b_t[0] = (center_x - box_width) / img_width;
              b_t[1] = (center_y - box_height) / img_height;
              b_t[2] = (center_x + box_width) / img_width;
              b_t[3] = (center_y + box_height) / img_height;
              b_t += 4;
138 139 140 141 142 143 144
            }
          } else {
            // priors with different aspect ratios
            for (size_t r = 0; r < aspect_ratios.size(); ++r) {
              float ar = aspect_ratios[r];
              box_width = min_size * sqrt(ar) / 2.;
              box_height = min_size / sqrt(ar) / 2.;
145 146 147 148 149
              b_t[0] = (center_x - box_width) / img_width;
              b_t[1] = (center_y - box_height) / img_height;
              b_t[2] = (center_x + box_width) / img_width;
              b_t[3] = (center_y + box_height) / img_height;
              b_t += 4;
150 151 152 153 154
            }
            if (max_sizes.size() > 0) {
              auto max_size = max_sizes[s];
              // square prior with size sqrt(minSize * maxSize)
              box_width = box_height = sqrt(min_size * max_size) / 2.;
155 156 157 158 159
              b_t[0] = (center_x - box_width) / img_width;
              b_t[1] = (center_y - box_height) / img_height;
              b_t[2] = (center_x + box_width) / img_width;
              b_t[3] = (center_y + box_height) / img_height;
              b_t += 4;
160
            }
W
wanghaox 已提交
161 162 163 164 165 166
          }
        }
      }
    }

    if (clip) {
167 168 169
      K* dt = boxes->data<K>();
      std::transform(dt, dt + boxes->numel(), dt, [](K v) -> K {
        return std::min<K>(std::max<K>(v, 0.), 1.);
170
      });
W
wanghaox 已提交
171
    }
W
wanghaox 已提交
172

W
wanghaox 已提交
173
    framework::Tensor var_t;
174
    var_t.mutable_data<K>(
175
        pten::make_ddim({1, static_cast<int>(variances.size())}),
W
wanghaox 已提交
176
        ctx.GetPlace());
177
    auto var_et = framework::EigenTensor<K, 2>::From(var_t);
178 179 180 181

#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for
#endif
W
wanghaox 已提交
182
    for (size_t i = 0; i < variances.size(); ++i) {
W
wanghaox 已提交
183
      var_et(0, i) = variances[i];
W
wanghaox 已提交
184
    }
W
wanghaox 已提交
185

W
wanghaox 已提交
186
    int box_num = feature_height * feature_width * num_priors;
W
wanghaox 已提交
187 188 189
    auto var_dim = vars->dims();
    vars->Resize({box_num, static_cast<int>(variances.size())});

190
    auto e_vars = framework::EigenMatrix<K, Eigen::RowMajor>::From(*vars);
W
wanghaox 已提交
191

192 193 194 195
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for collapse(2)
#endif
    for (int i = 0; i < box_num; ++i) {
196
      for (size_t j = 0; j < variances.size(); ++j) {
197 198 199
        e_vars(i, j) = variances[j];
      }
    }
W
wanghaox 已提交
200
    vars->Resize(var_dim);
W
wanghaox 已提交
201
  }
W
wanghaox 已提交
202
};  // namespace operators
W
wanghaox 已提交
203 204 205

}  // namespace operators
}  // namespace paddle