linalg.py 10.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
from paddle.common_ops_import import *
Z
Zhang Ting 已提交
15 16 17
from ..fluid.layer_helper import LayerHelper
from ..fluid.data_feeder import check_variable_and_dtype, check_type
from ..fluid.framework import in_dygraph_mode
18

19 20
__all__ = [
    'matmul',
L
liuwei1031 已提交
21
    'dot',
22 23 24
    #  'einsum',
    #  'morm',
    #  'transpose',
Z
Zhang Ting 已提交
25
    'dist',
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
    #  't',
    #  'cross',
    #  'cholesky',
    #  'tensordot'
]


def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
    """
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.

    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:

    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
      :math:`[1, D]` in transposed form.

    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
      performs in the following way.

      - If both are 2-D, they are multiplied like conventional matrices.
      - If either is n-D, it is treated as a stack of matrices residing in the
        last two dimensions and a batched matrix multiply supporting broadcast
        applies on the two tensors.

    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
    removed after matrix multiplication.

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
        alpha (float): The scale of output. Default 1.0.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The product Tensor (or LoDTensor) variable.

    Examples:
        .. code-block:: python

            # Examples to clarify shapes of the inputs and output
            # x: [B, ..., M, K], y: [B, ..., K, N]
            # paddle.matmul(x, y)  # out: [B, ..., M, N]

            # x: [B, M, K], y: [B, K, N]
            # paddle.matmul(x, y)  # out: [B, M, N]

            # x: [B, M, K], y: [K, N]
            # paddle.matmul(x, y)  # out: [B, M, N]

            # x: [M, K], y: [K, N]
            # paddle.matmul(x, y)  # out: [M, N]

            # x: [B, M, K], y: [K]
            # paddle.matmul(x, y)  # out: [B, M]

            # x: [K], y: [K]
            # paddle.matmul(x, y)  # out: [1]

            # x: [M], y: [N]
            # paddle.matmul(x, y, True, True)  # out: [M, N]

            import paddle.fluid as fluid
            x = fluid.data(name='x', shape=[2, 3], dtype='float32')
            y = fluid.data(name='y', shape=[3, 2], dtype='float32')
            out = paddle.matmul(x, y, True, True)
    """
    attrs = {
        'transpose_X': transpose_x,
        'transpose_Y': transpose_y,
        'alpha': float(alpha),
    }

    if in_dygraph_mode():
        return core.ops.matmul(x, y, 'transpose_X', transpose_x, 'transpose_Y',
                               transpose_y, 'alpha', float(alpha))

    def __check_input(x, y):
        var_names = {'x': x, 'y': y}
        for name, val in var_names.items():
            check_variable_and_dtype(
                val, name, ['float16', 'float32', 'float64'], 'matmul')
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
            y_shape = y_shape + [1]

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            assert (x_shape[-1] == -1) or (y_shape[-2] == -1),                         \
                "After performing an optional transpose, Input X's width should be "   \
                "equal to Y's width for multiplication "                               \
                "prerequisites. But received X's shape: %s, Y's shape: %s\n" %         \
                (x_shape, y_shape)

        if len(y_shape) > 2 and len(x_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
                if dim_x != y_shape[i]:
                    raise ValueError(
                        "When the matrix is larger than 2 dimensions, the higher "
                        "dimensional values of the two matrices need to be equal. "
                        "But received x_shape[%d] != y_shape[%d]. X's shape: %s, "
                        "Y's shape: %s.\n" % (i, i, x_shape, y_shape))

    __check_input(x, y)

    helper = LayerHelper('matmul', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs=attrs)
    return out
Z
Zhang Ting 已提交
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235


def dist(x, y, p=2):
    """
    This OP returns the p-norm of (x - y). It is not a norm in a strict sense, only as a measure
    of distance. The shapes of x and y must be broadcastable.

    Where, z = x - y,

    When p = 0, defining $0^0=0$, the zero-norm of z is simply the number of non-zero elements of z.

    .. math::

        ||z||_{0}=\lim_{p \\rightarrow 0}\sum_{i=1}^{m}|z_i|^{p}

    When p = inf, the inf-norm of z is the maximum element of z.

    .. math::

        ||z||_\infty=\max_i |z_i|

    When p = -inf, the negative-inf-norm of z is the minimum element of z.

    .. math::

        ||z||_{-\infty}=\min_i |z_i|

    Otherwise, the p-norm of z follows the formula,

    .. math::

        ||z||_{p}=(\sum_{i=1}^{m}|z_i|^p)^{\\frac{1}{p}}

    Args:
        x (Variable): 1-D to 6-D Tensor, its data type is float32 or float64.
        y (Variable): 1-D to 6-D Tensor, its data type is float32 or float64.
        p (float, optional): The norm to be computed, its data type is float32 or float64. Default: 2.

    Returns:
        Variable: Tensor that is the p-norm of (x - y).

    Examples:
        .. code-block:: python

            import paddle
            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(np.array([[3, 3],[3, 3]]).astype(np.float32))
                y = fluid.dygraph.to_variable(np.array([[3, 3],[3, 1]]).astype(np.float32))
                out = paddle.dist(x, y, 0)
                print(out.numpy()) # out = [1.]

                out = paddle.dist(x, y, 2)
                print(out.numpy()) # out = [2.]

                out = paddle.dist(x, y, float("inf"))
                print(out.numpy()) # out = [2.]

                out = paddle.dist(x, y, float("-inf"))
                print(out.numpy()) # out = [0.]
    """
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'dist')
    check_variable_and_dtype(y, 'dtype', ['float32', 'float64'], 'dist')
    check_type(p, 'p', (float, int), 'dist')
    helper = LayerHelper("dist", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)

    inputs = {"X": [x], "Y": [y]}
    outputs = {'Out': [out]}
    attrs = {"p": float(p)}
    helper.append_op(
        type='dist', inputs=inputs, outputs={'Out': out}, attrs=attrs)
    return out
L
liuwei1031 已提交
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284


def dot(x, y, name=None):
    """
    This operator calculates inner product for vectors.
   
    .. note::
       Only support 1-d Tensor(vector).

    Parameters:
    
        x(Variable): 1-D ``Tensor`` or ``LoDTensor``. Its datatype should be ``float32``, ``float64``, ``int32``, ``int64``
        y(Variable): 1-D ``Tensor`` or ``LoDTensor``. Its datatype soulde be ``float32``, ``float64``, ``int32``, ``int64``
        name(str, optional): Name of the output. Default is None. It's used to print debug info for developers. Details: :ref:`api_guide_Name`

    Examples:

    .. code-block:: python

        import paddle
        import paddle.fluid as fluid
        import numpy as np
        
        with fluid.dygraph.guard():
          x = fluid.dygraph.to_variable(np.random.uniform(0.1, 1, [10]).astype(np.float32))
          y = fluid.dygraph.to_variable(np.random.uniform(1, 3, [10]).astype(np.float32))
          z = paddle.dot(x, y)
          print(z.numpy())

    """
    op_type = 'dot'
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)

    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             op_type)
    check_variable_and_dtype(y, 'y', ['float32', 'float64', 'int32', 'int64'],
                             op_type)

    helper = LayerHelper(op_type, **locals())
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
    helper.append_op(
        type="dot", inputs={'X': x,
                            'Y': y}, attrs={}, outputs={"Out": out})
    return out