cos_sim_op.h 4.5 KB
Newer Older
X
Xinghai Sun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
Q
qijun 已提交
26 27 28
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
X
Xinghai Sun 已提交
29 30 31 32 33

template <typename Place, typename T>
class CosSimKernel : public framework::OpKernel {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
34 35 36 37 38
    auto* input_x = context.Input<Tensor>("X");
    auto* input_y = context.Input<Tensor>("Y");
    auto* output_z = context.Output<Tensor>("Out");
    auto* output_x_norm = context.Output<Tensor>("XNorm");
    auto* output_y_norm = context.Output<Tensor>("YNorm");
X
Xinghai Sun 已提交
39

40 41 42
    output_z->mutable_data<T>(context.GetPlace());
    output_x_norm->mutable_data<T>(context.GetPlace());
    output_y_norm->mutable_data<T>(context.GetPlace());
X
Xinghai Sun 已提交
43

44
    auto dims = input_x->dims();
X
Xinghai Sun 已提交
45 46
    int size = static_cast<int>(framework::product(dims));
    auto new_dims = framework::make_ddim({dims[0], size / dims[0]});
47 48
    auto x = EigenMatrix<T>::From(*input_x, new_dims);
    auto y = EigenMatrix<T>::From(*input_y, new_dims);
Q
qijun 已提交
49 50 51
    auto z = EigenVector<T>::Flatten(*output_z);
    auto x_norm = EigenVector<T>::Flatten(*output_x_norm);
    auto y_norm = EigenVector<T>::Flatten(*output_y_norm);
X
Xinghai Sun 已提交
52 53

    auto place = context.GetEigenDevice<Place>();
Q
qijun 已提交
54 55 56
    auto xy = (x * y).sum(Eigen::array<int, 1>({{1}}));
    x_norm.device(place) = x.square().sum(Eigen::array<int, 1>({{1}})).sqrt();
    y_norm.device(place) = y.square().sum(Eigen::array<int, 1>({{1}})).sqrt();
57
    z.device(place) = xy / x_norm / y_norm;
X
Xinghai Sun 已提交
58 59 60 61 62 63 64
  }
};

template <typename Place, typename T>
class CosSimGradKernel : public framework::OpKernel {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
65 66 67 68 69 70 71 72
    auto* input_x = context.Input<Tensor>("X");
    auto* input_y = context.Input<Tensor>("Y");
    auto* input_z = context.Input<Tensor>("Out");
    auto* input_x_norm = context.Input<Tensor>("XNorm");
    auto* input_y_norm = context.Input<Tensor>("YNorm");
    auto* output_grad_x = context.Output<Tensor>(framework::GradVarName("X"));
    auto* output_grad_y = context.Output<Tensor>(framework::GradVarName("Y"));
    auto* input_grad_z = context.Input<Tensor>(framework::GradVarName("Out"));
X
Xinghai Sun 已提交
73

74
    auto dims = input_x->dims();
X
Xinghai Sun 已提交
75 76
    int size = static_cast<int>(framework::product(dims));
    auto new_dims = framework::make_ddim({dims[0], size / dims[0]});
77 78 79 80 81 82
    auto x = EigenMatrix<T>::From(*input_x, new_dims);
    auto y = EigenMatrix<T>::From(*input_y, new_dims);
    auto z = EigenMatrix<T>::From(*input_z);
    auto x_norm = EigenMatrix<T>::From(*input_x_norm);
    auto y_norm = EigenMatrix<T>::From(*input_y_norm);
    auto dz = EigenMatrix<T>::From(*input_grad_z);
X
Xinghai Sun 已提交
83

84
    Eigen::DSizes<int, 2> bcast(1, new_dims[1]);
85 86
    auto z_bcast = z.broadcast(bcast);
    auto dz_bcast = dz.broadcast(bcast);
X
Xinghai Sun 已提交
87
    auto place = context.GetEigenDevice<Place>();
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
    auto x_snorm_bcast = x_norm.square().eval().broadcast(bcast);
    auto y_snorm_bcast = y_norm.square().eval().broadcast(bcast);
    auto norm_prod_bcast = (x_norm * y_norm).eval().broadcast(bcast);
    if (output_grad_x) {
      output_grad_x->mutable_data<T>(context.GetPlace());
      auto dx = EigenMatrix<T>::From(*output_grad_x, new_dims);
      dx.device(place) =
          dz_bcast * (y / norm_prod_bcast - z_bcast * x / x_snorm_bcast);
    }
    if (output_grad_y) {
      output_grad_y->mutable_data<T>(context.GetPlace());
      auto dy = EigenMatrix<T>::From(*output_grad_y, new_dims);
      dy.device(place) =
          dz_bcast * (x / norm_prod_bcast - z_bcast * y / y_snorm_bcast);
    }
X
Xinghai Sun 已提交
103 104 105 106 107
  }
};

}  // namespace operators
}  // namespace paddle