test_egr_python_api.py 43.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
# 
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# 
#     http://www.apache.org/licenses/LICENSE-2.0
# 
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle.fluid.core as core
import paddle
import numpy as np
J
Jiabin Yang 已提交
18
from paddle.fluid.framework import _test_eager_guard, EagerParamBase, _in_legacy_dygraph, in_dygraph_mode, _current_expected_place, _disable_legacy_dygraph
J
Jiabin Yang 已提交
19
from paddle.fluid.data_feeder import convert_dtype
20
import unittest
21
import copy
22
import paddle.compat as cpt
23 24 25 26


class EagerScaleTestCase(unittest.TestCase):
    def test_scale_base(self):
J
Jiabin Yang 已提交
27
        with _test_eager_guard():
28 29 30 31 32 33 34 35 36 37 38 39
            paddle.set_device("cpu")
            arr = np.ones([4, 16, 16, 32]).astype('float32')
            tensor = paddle.to_tensor(arr, 'float32', core.CPUPlace())
            print(tensor)
            tensor = core.eager.scale(tensor, 2.0, 0.9, True, False)
            for i in range(0, 100):
                tensor = core.eager.scale(tensor, 2.0, 0.9, True, False)
            print(tensor)
            self.assertEqual(tensor.shape, [4, 16, 16, 32])
            self.assertEqual(tensor.stop_gradient, True)

    def test_retain_grad_and_run_backward(self):
J
Jiabin Yang 已提交
40
        with _test_eager_guard():
41 42 43 44 45 46 47 48 49
            paddle.set_device("cpu")

            input_data = np.ones([4, 16, 16, 32]).astype('float32')
            data_eager = paddle.to_tensor(input_data, 'float32',
                                          core.CPUPlace(), False)

            grad_data = np.ones([4, 16, 16, 32]).astype('float32')
            grad_eager = paddle.to_tensor(grad_data, 'float32', core.CPUPlace())

50
            data_eager.retain_grads()
51 52

            out_eager = core.eager.scale(data_eager, 1.0, 0.9, True, True)
53
            self.assertIsNone(data_eager.grad)
54
            out_eager.backward(grad_eager, False)
55
            self.assertIsNotNone(data_eager.grad)
56 57
            self.assertTrue(np.array_equal(data_eager.grad.numpy(), input_data))

58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
    def test_retain_grad_and_run_backward_raises(self):
        with _test_eager_guard():
            paddle.set_device("cpu")

            input_data = np.ones([4, 16, 16, 32]).astype('float32')
            data_eager = paddle.to_tensor(input_data, 'float32',
                                          core.CPUPlace(), False)

            grad_data = np.ones([4, 16, 16, 32]).astype('float32')
            grad_data2 = np.ones([4, 16]).astype('float32')
            grad_eager = paddle.to_tensor(grad_data, 'float32', core.CPUPlace())
            grad_eager2 = paddle.to_tensor(grad_data2, 'float32',
                                           core.CPUPlace())

            data_eager.retain_grads()

            out_eager = core.eager.scale(data_eager, 1.0, 0.9, True, True)
75
            self.assertIsNone(data_eager.grad)
76 77 78 79 80 81 82 83 84 85
            with self.assertRaisesRegexp(
                    AssertionError,
                    "The type of grad_tensor must be paddle.Tensor"):
                out_eager.backward(grad_data, False)

            with self.assertRaisesRegexp(
                    AssertionError,
                    "Tensor shape not match, Tensor of grad_tensor /*"):
                out_eager.backward(grad_eager2, False)

86 87

class EagerDtypeTestCase(unittest.TestCase):
J
Jiabin Yang 已提交
88 89
    def check_to_tesnsor_and_numpy(self, dtype, proto_dtype):
        with _test_eager_guard():
90 91
            arr = np.random.random([4, 16, 16, 32]).astype(dtype)
            tensor = paddle.to_tensor(arr, dtype)
J
Jiabin Yang 已提交
92
            self.assertEqual(tensor.dtype, proto_dtype)
93 94 95
            self.assertTrue(np.array_equal(arr, tensor.numpy()))

    def test_dtype_base(self):
J
Jiabin Yang 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109
        print("Test_dtype")
        self.check_to_tesnsor_and_numpy('bool', core.VarDesc.VarType.BOOL)
        self.check_to_tesnsor_and_numpy('int8', core.VarDesc.VarType.INT8)
        self.check_to_tesnsor_and_numpy('uint8', core.VarDesc.VarType.UINT8)
        self.check_to_tesnsor_and_numpy('int16', core.VarDesc.VarType.INT16)
        self.check_to_tesnsor_and_numpy('int32', core.VarDesc.VarType.INT32)
        self.check_to_tesnsor_and_numpy('int64', core.VarDesc.VarType.INT64)
        self.check_to_tesnsor_and_numpy('float16', core.VarDesc.VarType.FP16)
        self.check_to_tesnsor_and_numpy('float32', core.VarDesc.VarType.FP32)
        self.check_to_tesnsor_and_numpy('float64', core.VarDesc.VarType.FP64)
        self.check_to_tesnsor_and_numpy('complex64',
                                        core.VarDesc.VarType.COMPLEX64)
        self.check_to_tesnsor_and_numpy('complex128',
                                        core.VarDesc.VarType.COMPLEX128)
110 111


112
class EagerVariablePropertiesAndMethodsTestCase(unittest.TestCase):
113
    def constructor(self, place):
114
        egr_tensor = core.eager.Tensor()
115 116
        self.assertEqual(egr_tensor.persistable, False)
        self.assertTrue("generated" in egr_tensor.name)
117
        self.assertEqual(egr_tensor.shape, [0])
118 119 120
        self.assertEqual(egr_tensor.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor.stop_gradient, True)

121 122 123
        egr_tensor0 = core.eager.Tensor(core.VarDesc.VarType.FP32,
                                        [4, 16, 16, 32], "test_eager_tensor",
                                        core.VarDesc.VarType.LOD_TENSOR, True)
124 125 126 127 128 129
        self.assertEqual(egr_tensor0.persistable, True)
        self.assertEqual(egr_tensor0.name, "test_eager_tensor")
        self.assertEqual(egr_tensor0.shape, [4, 16, 16, 32])
        self.assertEqual(egr_tensor0.dtype, core.VarDesc.VarType.FP32)

        arr0 = np.random.rand(4, 16, 16, 32).astype('float32')
130 131
        egr_tensor1 = core.eager.Tensor(arr0, place, True, False,
                                        "numpy_tensor1", False)
132 133 134 135 136 137 138 139 140
        self.assertEqual(egr_tensor1.persistable, True)
        self.assertEqual(egr_tensor1.name, "numpy_tensor1")
        self.assertEqual(egr_tensor1.shape, [4, 16, 16, 32])
        self.assertEqual(egr_tensor1.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor1.stop_gradient, False)
        self.assertTrue(egr_tensor1.place._equals(place))
        self.assertTrue(np.array_equal(egr_tensor1.numpy(), arr0))

        arr1 = np.random.randint(100, size=(4, 16, 16, 32), dtype=np.int64)
141 142
        egr_tensor2 = core.eager.Tensor(arr1, place, False, True,
                                        "numpy_tensor2", True)
143 144 145 146 147 148 149 150 151
        self.assertEqual(egr_tensor2.persistable, False)
        self.assertEqual(egr_tensor2.name, "numpy_tensor2")
        self.assertEqual(egr_tensor2.shape, [4, 16, 16, 32])
        self.assertEqual(egr_tensor2.dtype, core.VarDesc.VarType.INT64)
        self.assertEqual(egr_tensor2.stop_gradient, True)
        self.assertTrue(egr_tensor2.place._equals(place))
        self.assertTrue(np.array_equal(egr_tensor2.numpy(), arr1))

        arr2 = np.random.rand(4, 16, 16, 32, 64).astype('float32')
152
        egr_tensor3 = core.eager.Tensor(arr2)
153 154 155 156 157 158 159 160 161 162 163
        self.assertEqual(egr_tensor3.persistable, False)
        self.assertTrue("generated_tensor" in egr_tensor3.name)
        self.assertEqual(egr_tensor3.shape, [4, 16, 16, 32, 64])
        self.assertEqual(egr_tensor3.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor3.stop_gradient, True)
        self.assertTrue(
            egr_tensor3.place._equals(
                paddle.fluid.framework._current_expected_place()))
        self.assertTrue(np.array_equal(egr_tensor3.numpy(), arr2))

        egr_tensor3.stop_gradient = False
164
        egr_tensor4 = core.eager.Tensor(egr_tensor3)
165 166 167 168 169 170 171 172 173 174 175 176
        self.assertEqual(egr_tensor4.persistable, False)
        self.assertTrue("generated_tensor" in egr_tensor4.name)
        self.assertEqual(egr_tensor4.shape, egr_tensor3.shape)
        self.assertEqual(egr_tensor4.dtype, egr_tensor3.dtype)
        self.assertEqual(egr_tensor4.stop_gradient, True)
        self.assertTrue(
            egr_tensor4.place._equals(
                paddle.fluid.framework._current_expected_place()))
        self.assertTrue(
            np.array_equal(egr_tensor4.numpy(), egr_tensor3.numpy()))

        arr4 = np.random.rand(4, 16, 16, 32).astype('float32')
177
        egr_tensor5 = core.eager.Tensor(arr4, place)
178 179 180 181 182 183 184 185
        self.assertEqual(egr_tensor5.persistable, False)
        self.assertTrue("generated_tensor" in egr_tensor5.name)
        self.assertEqual(egr_tensor5.shape, [4, 16, 16, 32])
        self.assertEqual(egr_tensor5.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor5.stop_gradient, True)
        self.assertTrue(egr_tensor5.place._equals(place))
        self.assertTrue(np.array_equal(egr_tensor5.numpy(), arr4))

186
        egr_tensor6 = core.eager.Tensor(egr_tensor5, core.CPUPlace())
187 188 189 190 191 192 193 194 195
        self.assertEqual(egr_tensor6.persistable, False)
        self.assertTrue("generated_tensor" in egr_tensor6.name)
        self.assertEqual(egr_tensor6.shape, [4, 16, 16, 32])
        self.assertEqual(egr_tensor6.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor6.stop_gradient, True)
        self.assertEqual(egr_tensor6.place.is_cpu_place(), True)
        self.assertTrue(
            np.array_equal(egr_tensor6.numpy(), egr_tensor5.numpy()))

196
        egr_tensor7 = core.eager.Tensor(arr4, place, True)
197 198 199 200 201 202 203 204
        self.assertEqual(egr_tensor7.persistable, True)
        self.assertTrue("generated_tensor" in egr_tensor7.name)
        self.assertEqual(egr_tensor7.shape, [4, 16, 16, 32])
        self.assertEqual(egr_tensor7.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor7.stop_gradient, True)
        self.assertTrue(egr_tensor7.place._equals(place))
        self.assertTrue(np.array_equal(egr_tensor7.numpy(), arr4))

205
        egr_tensor8 = core.eager.Tensor(egr_tensor6, place, "egr_tensor8")
206 207 208 209 210 211 212 213 214
        self.assertEqual(egr_tensor8.persistable, False)
        self.assertEqual(egr_tensor8.name, "egr_tensor8")
        self.assertEqual(egr_tensor8.shape, [4, 16, 16, 32])
        self.assertEqual(egr_tensor8.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor8.stop_gradient, True)
        self.assertTrue(egr_tensor8.place._equals(place))
        self.assertTrue(
            np.array_equal(egr_tensor8.numpy(), egr_tensor5.numpy()))

215
        egr_tensor9 = core.eager.Tensor(arr4, place, True, True)
216 217 218 219 220 221 222 223
        self.assertEqual(egr_tensor9.persistable, True)
        self.assertTrue("generated_tensor" in egr_tensor9.name)
        self.assertEqual(egr_tensor9.shape, [4, 16, 16, 32])
        self.assertEqual(egr_tensor9.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor9.stop_gradient, True)
        self.assertTrue(egr_tensor9.place._equals(place))
        self.assertTrue(np.array_equal(egr_tensor9.numpy(), arr4))

224 225 226
        x = np.random.rand(3, 3).astype('float32')
        t = paddle.fluid.Tensor()
        t.set(x, paddle.fluid.CPUPlace())
227
        egr_tensor10 = core.eager.Tensor(t, place)
228 229 230 231 232 233 234 235
        self.assertEqual(egr_tensor10.persistable, False)
        self.assertTrue("generated_tensor" in egr_tensor10.name)
        self.assertEqual(egr_tensor10.shape, [3, 3])
        self.assertEqual(egr_tensor10.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor10.stop_gradient, True)
        self.assertTrue(egr_tensor10.place._equals(place))
        self.assertTrue(np.array_equal(egr_tensor10.numpy(), x))

236
        egr_tensor11 = core.eager.Tensor(t, place, "framework_constructed")
237 238 239 240 241 242 243 244
        self.assertEqual(egr_tensor11.persistable, False)
        self.assertTrue("framework_constructed" in egr_tensor11.name)
        self.assertEqual(egr_tensor11.shape, [3, 3])
        self.assertEqual(egr_tensor11.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor11.stop_gradient, True)
        self.assertTrue(egr_tensor11.place._equals(place))
        self.assertTrue(np.array_equal(egr_tensor11.numpy(), x))

245
        egr_tensor12 = core.eager.Tensor(t)
246 247 248 249 250 251 252 253
        self.assertEqual(egr_tensor12.persistable, False)
        self.assertTrue("generated_tensor" in egr_tensor12.name)
        self.assertEqual(egr_tensor12.shape, [3, 3])
        self.assertEqual(egr_tensor12.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor12.stop_gradient, True)
        self.assertTrue(egr_tensor12.place._equals(paddle.fluid.CPUPlace()))
        self.assertTrue(np.array_equal(egr_tensor12.numpy(), x))

254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
        with self.assertRaisesRegexp(
                ValueError, "The shape of Parameter should not be None"):
            eager_param = EagerParamBase(shape=None, dtype="float32")

        with self.assertRaisesRegexp(
                ValueError, "The dtype of Parameter should not be None"):
            eager_param = EagerParamBase(shape=[1, 1], dtype=None)

        with self.assertRaisesRegexp(
                ValueError,
                "The dimensions of shape for Parameter must be greater than 0"):
            eager_param = EagerParamBase(shape=[], dtype="float32")

        with self.assertRaisesRegexp(
                ValueError,
                "Each dimension of shape for Parameter must be greater than 0, but received /*"
        ):
            eager_param = EagerParamBase(shape=[-1], dtype="float32")

        eager_param = EagerParamBase(shape=[1, 1], dtype="float32")
        self.assertTrue(eager_param.trainable)
        eager_param.trainable = False
        self.assertFalse(eager_param.trainable)
        with self.assertRaisesRegexp(
                ValueError,
                "The type of trainable MUST be bool, but the type is /*"):
            eager_param.trainable = "False"

282 283 284 285 286 287 288 289 290 291
    def test_constructor(self):
        print("Test_constructor")
        paddle.set_device("cpu")
        place_list = [core.CPUPlace()]
        if core.is_compiled_with_cuda():
            place_list.append(core.CUDAPlace(0))
        with _test_eager_guard():
            for p in place_list:
                self.constructor(p)

292
    def constructor_with_kwargs(self, place):
293
        # init Tensor by Python array
294 295
        arr = np.random.rand(4, 16, 16, 32).astype('float32')

296
        egr_tensor0 = core.eager.Tensor(value=arr)
297 298 299 300 301 302 303 304 305
        self.assertEqual(egr_tensor0.persistable, False)
        self.assertTrue("generated" in egr_tensor0.name)
        self.assertEqual(egr_tensor0.shape, [4, 16, 16, 32])
        self.assertTrue(
            egr_tensor0.place._equals(
                paddle.fluid.framework._current_expected_place()))
        self.assertEqual(egr_tensor0.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor0.stop_gradient, True)

306
        egr_tensor1 = core.eager.Tensor(value=arr, place=place)
307 308 309 310 311 312 313
        self.assertEqual(egr_tensor1.persistable, False)
        self.assertTrue("generated" in egr_tensor1.name)
        self.assertEqual(egr_tensor1.shape, [4, 16, 16, 32])
        self.assertTrue(egr_tensor1.place._equals(place))
        self.assertEqual(egr_tensor1.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor1.stop_gradient, True)

314
        egr_tensor2 = core.eager.Tensor(arr, place=place)
315 316 317 318 319 320 321
        self.assertEqual(egr_tensor2.persistable, False)
        self.assertTrue("generated" in egr_tensor2.name)
        self.assertEqual(egr_tensor2.shape, [4, 16, 16, 32])
        self.assertTrue(egr_tensor2.place._equals(place))
        self.assertEqual(egr_tensor2.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor2.stop_gradient, True)

322
        egr_tensor3 = core.eager.Tensor(
323 324 325 326 327 328 329 330
            arr, place=place, name="new_eager_tensor")
        self.assertEqual(egr_tensor3.persistable, False)
        self.assertTrue("new_eager_tensor" in egr_tensor3.name)
        self.assertEqual(egr_tensor3.shape, [4, 16, 16, 32])
        self.assertTrue(egr_tensor3.place._equals(place))
        self.assertEqual(egr_tensor3.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor3.stop_gradient, True)

331
        egr_tensor4 = core.eager.Tensor(
332 333 334 335 336 337 338 339
            arr, place=place, persistable=True, name="new_eager_tensor")
        self.assertEqual(egr_tensor4.persistable, True)
        self.assertTrue("new_eager_tensor" in egr_tensor4.name)
        self.assertEqual(egr_tensor4.shape, [4, 16, 16, 32])
        self.assertTrue(egr_tensor4.place._equals(place))
        self.assertEqual(egr_tensor4.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor4.stop_gradient, True)

340
        egr_tensor5 = core.eager.Tensor(
341 342 343 344 345 346 347 348 349 350 351 352
            arr,
            core.CPUPlace(),
            persistable=True,
            name="new_eager_tensor",
            zero_copy=True)
        self.assertEqual(egr_tensor5.persistable, True)
        self.assertTrue("new_eager_tensor" in egr_tensor5.name)
        self.assertEqual(egr_tensor5.shape, [4, 16, 16, 32])
        self.assertTrue(egr_tensor5.place.is_cpu_place())
        self.assertEqual(egr_tensor5.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor5.stop_gradient, True)

353
        egr_tensor6 = core.eager.Tensor(
354 355 356 357 358 359 360 361 362 363 364 365
            arr,
            place=core.CPUPlace(),
            persistable=True,
            name="new_eager_tensor",
            zero_copy=True)
        self.assertEqual(egr_tensor6.persistable, True)
        self.assertTrue("new_eager_tensor" in egr_tensor6.name)
        self.assertEqual(egr_tensor6.shape, [4, 16, 16, 32])
        self.assertTrue(egr_tensor6.place.is_cpu_place())
        self.assertEqual(egr_tensor6.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor6.stop_gradient, True)

366
        egr_tensor7 = core.eager.Tensor(
367 368 369 370 371 372 373 374 375 376 377 378
            arr,
            place=place,
            persistable=True,
            name="new_eager_tensor",
            zero_copy=True)
        self.assertEqual(egr_tensor7.persistable, True)
        self.assertTrue("new_eager_tensor" in egr_tensor7.name)
        self.assertEqual(egr_tensor7.shape, [4, 16, 16, 32])
        self.assertTrue(egr_tensor7.place._equals(place))
        self.assertEqual(egr_tensor7.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor7.stop_gradient, True)

379
        egr_tensor8 = core.eager.Tensor(
380 381 382 383 384 385 386 387 388 389 390 391 392
            arr,
            place=place,
            persistable=True,
            name="new_eager_tensor",
            zero_copy=True,
            stop_gradient=False)
        self.assertEqual(egr_tensor8.persistable, True)
        self.assertTrue("new_eager_tensor" in egr_tensor8.name)
        self.assertEqual(egr_tensor8.shape, [4, 16, 16, 32])
        self.assertTrue(egr_tensor8.place._equals(place))
        self.assertEqual(egr_tensor8.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor8.stop_gradient, False)

393
        egr_tensor9 = core.eager.Tensor(
394 395 396 397 398 399 400 401
            arr, place, True, True, "new_eager_tensor", stop_gradient=False)
        self.assertEqual(egr_tensor9.persistable, True)
        self.assertTrue("new_eager_tensor" in egr_tensor9.name)
        self.assertEqual(egr_tensor9.shape, [4, 16, 16, 32])
        self.assertTrue(egr_tensor9.place._equals(place))
        self.assertEqual(egr_tensor9.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor9.stop_gradient, False)

402
        egr_tensor10 = core.eager.Tensor(
403 404 405 406 407 408 409 410 411 412 413 414 415
            arr,
            place,
            True,
            True,
            name="new_eager_tensor",
            stop_gradient=False)
        self.assertEqual(egr_tensor10.persistable, True)
        self.assertTrue("new_eager_tensor" in egr_tensor10.name)
        self.assertEqual(egr_tensor10.shape, [4, 16, 16, 32])
        self.assertTrue(egr_tensor10.place._equals(place))
        self.assertEqual(egr_tensor10.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor10.stop_gradient, False)

416
        egr_tensor11 = core.eager.Tensor(
417 418 419 420 421 422 423 424 425 426 427 428 429
            arr,
            place,
            True,
            zero_copy=True,
            name="new_eager_tensor",
            stop_gradient=False)
        self.assertEqual(egr_tensor11.persistable, True)
        self.assertTrue("new_eager_tensor" in egr_tensor11.name)
        self.assertEqual(egr_tensor11.shape, [4, 16, 16, 32])
        self.assertTrue(egr_tensor11.place._equals(place))
        self.assertEqual(egr_tensor11.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor11.stop_gradient, False)

430
        egr_tensor12 = core.eager.Tensor(
431 432 433 434 435 436 437 438 439 440 441 442 443
            arr,
            place,
            persistable=True,
            zero_copy=True,
            name="new_eager_tensor",
            stop_gradient=False)
        self.assertEqual(egr_tensor12.persistable, True)
        self.assertTrue("new_eager_tensor" in egr_tensor12.name)
        self.assertEqual(egr_tensor12.shape, [4, 16, 16, 32])
        self.assertTrue(egr_tensor12.place._equals(place))
        self.assertEqual(egr_tensor12.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor12.stop_gradient, False)

444
        egr_tensor13 = core.eager.Tensor(
445 446 447 448 449 450 451 452 453 454 455 456 457 458
            value=arr,
            place=place,
            persistable=True,
            zero_copy=True,
            name="new_eager_tensor",
            stop_gradient=False)
        self.assertEqual(egr_tensor13.persistable, True)
        self.assertTrue("new_eager_tensor" in egr_tensor13.name)
        self.assertEqual(egr_tensor13.shape, [4, 16, 16, 32])
        self.assertTrue(egr_tensor13.place._equals(place))
        self.assertEqual(egr_tensor13.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor13.stop_gradient, False)

        # special case
459
        egr_tensor14 = core.eager.Tensor(
460 461 462 463 464 465 466 467 468 469
            dtype=core.VarDesc.VarType.FP32,
            dims=[4, 16, 16, 32],
            name="special_eager_tensor",
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=True)
        self.assertEqual(egr_tensor14.persistable, True)
        self.assertEqual(egr_tensor14.name, "special_eager_tensor")
        self.assertEqual(egr_tensor14.shape, [4, 16, 16, 32])
        self.assertEqual(egr_tensor14.dtype, core.VarDesc.VarType.FP32)

470 471
        # init Tensor by Tensor
        egr_tensor15 = core.eager.Tensor(value=egr_tensor4)
472 473 474 475 476 477 478 479 480 481 482
        self.assertEqual(egr_tensor15.persistable, True)
        self.assertTrue("generated" in egr_tensor15.name)
        self.assertEqual(egr_tensor15.shape, egr_tensor4.shape)
        self.assertEqual(egr_tensor15.dtype, egr_tensor4.dtype)
        self.assertEqual(egr_tensor15.stop_gradient, True)
        self.assertTrue(
            egr_tensor15.place._equals(
                paddle.fluid.framework._current_expected_place()))
        self.assertTrue(
            np.array_equal(egr_tensor15.numpy(), egr_tensor4.numpy()))

483
        egr_tensor16 = core.eager.Tensor(
484 485 486 487 488 489 490 491 492 493 494 495
            value=egr_tensor4, name="new_eager_tensor")
        self.assertEqual(egr_tensor16.persistable, True)
        self.assertTrue("new_eager_tensor" in egr_tensor16.name)
        self.assertEqual(egr_tensor16.shape, egr_tensor4.shape)
        self.assertEqual(egr_tensor16.dtype, egr_tensor4.dtype)
        self.assertEqual(egr_tensor16.stop_gradient, True)
        self.assertTrue(
            egr_tensor16.place._equals(
                paddle.fluid.framework._current_expected_place()))
        self.assertTrue(
            np.array_equal(egr_tensor16.numpy(), egr_tensor4.numpy()))

496
        egr_tensor17 = core.eager.Tensor(
497 498 499 500 501 502 503 504 505 506 507 508
            value=egr_tensor4,
            place=place,
            name="new_eager_tensor", )
        self.assertEqual(egr_tensor17.persistable, True)
        self.assertTrue("new_eager_tensor" in egr_tensor17.name)
        self.assertEqual(egr_tensor17.shape, egr_tensor4.shape)
        self.assertEqual(egr_tensor17.dtype, egr_tensor4.dtype)
        self.assertEqual(egr_tensor17.stop_gradient, True)
        self.assertTrue(egr_tensor17.place._equals(place))
        self.assertTrue(
            np.array_equal(egr_tensor17.numpy(), egr_tensor4.numpy()))

509
        egr_tensor18 = core.eager.Tensor(
510 511 512 513 514 515 516 517 518 519 520 521
            egr_tensor4,
            place=place,
            name="new_eager_tensor", )
        self.assertEqual(egr_tensor18.persistable, True)
        self.assertTrue("new_eager_tensor" in egr_tensor18.name)
        self.assertEqual(egr_tensor18.shape, egr_tensor4.shape)
        self.assertEqual(egr_tensor18.dtype, egr_tensor4.dtype)
        self.assertEqual(egr_tensor18.stop_gradient, True)
        self.assertTrue(egr_tensor18.place._equals(place))
        self.assertTrue(
            np.array_equal(egr_tensor18.numpy(), egr_tensor4.numpy()))

522
        egr_tensor19 = core.eager.Tensor(
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
            egr_tensor4,
            place,
            name="new_eager_tensor", )
        self.assertEqual(egr_tensor19.persistable, True)
        self.assertTrue("new_eager_tensor" in egr_tensor19.name)
        self.assertEqual(egr_tensor19.shape, egr_tensor4.shape)
        self.assertEqual(egr_tensor19.dtype, egr_tensor4.dtype)
        self.assertEqual(egr_tensor19.stop_gradient, True)
        self.assertTrue(egr_tensor19.place._equals(place))
        self.assertTrue(
            np.array_equal(egr_tensor19.numpy(), egr_tensor4.numpy()))

        # init eager tensor by framework tensor
        x = np.random.rand(3, 3).astype('float32')
        t = paddle.fluid.Tensor()
        t.set(x, paddle.fluid.CPUPlace())
539
        egr_tensor20 = core.eager.Tensor(value=t)
540 541 542 543 544 545 546 547 548 549
        self.assertEqual(egr_tensor20.persistable, False)
        self.assertTrue("generated_tensor" in egr_tensor20.name)
        self.assertEqual(egr_tensor20.shape, [3, 3])
        self.assertEqual(egr_tensor20.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor20.stop_gradient, True)
        self.assertTrue(
            egr_tensor20.place._equals(
                paddle.fluid.framework._current_expected_place()))
        self.assertTrue(np.array_equal(egr_tensor20.numpy(), x))

550
        egr_tensor21 = core.eager.Tensor(value=t, place=place)
551 552 553 554 555 556 557 558
        self.assertEqual(egr_tensor21.persistable, False)
        self.assertTrue("generated_tensor" in egr_tensor21.name)
        self.assertEqual(egr_tensor21.shape, [3, 3])
        self.assertEqual(egr_tensor21.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor21.stop_gradient, True)
        self.assertTrue(egr_tensor21.place._equals(place))
        self.assertTrue(np.array_equal(egr_tensor21.numpy(), x))

559
        egr_tensor22 = core.eager.Tensor(t, place=place)
560 561 562 563 564 565 566 567
        self.assertEqual(egr_tensor22.persistable, False)
        self.assertTrue("generated_tensor" in egr_tensor22.name)
        self.assertEqual(egr_tensor22.shape, [3, 3])
        self.assertEqual(egr_tensor22.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor22.stop_gradient, True)
        self.assertTrue(egr_tensor22.place._equals(place))
        self.assertTrue(np.array_equal(egr_tensor22.numpy(), x))

568
        egr_tensor23 = core.eager.Tensor(t, place, name="from_framework_tensor")
569 570 571 572 573 574 575 576
        self.assertEqual(egr_tensor23.persistable, False)
        self.assertTrue("from_framework_tensor" in egr_tensor23.name)
        self.assertEqual(egr_tensor23.shape, [3, 3])
        self.assertEqual(egr_tensor23.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor23.stop_gradient, True)
        self.assertTrue(egr_tensor23.place._equals(place))
        self.assertTrue(np.array_equal(egr_tensor23.numpy(), x))

577
        egr_tensor24 = core.eager.Tensor(
578 579 580 581 582 583 584 585 586 587 588
            value=t, place=place, name="from_framework_tensor")
        self.assertEqual(egr_tensor24.persistable, False)
        self.assertTrue("from_framework_tensor" in egr_tensor24.name)
        self.assertEqual(egr_tensor24.shape, [3, 3])
        self.assertEqual(egr_tensor24.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor24.stop_gradient, True)
        self.assertTrue(egr_tensor24.place._equals(place))
        self.assertTrue(np.array_equal(egr_tensor24.numpy(), x))

        # Bad usage
        # SyntaxError: positional argument follows keyword argument
589
        # egr_tensor25 = core.eager.Tensor(value=t, place) 
590 591 592 593 594 595 596 597 598 599 600

    def test_constructor_with_kwargs(self):
        print("Test_constructor_with_kwargs")
        paddle.set_device("cpu")
        place_list = [core.CPUPlace()]
        if core.is_compiled_with_cuda():
            place_list.append(core.CUDAPlace(0))
        with _test_eager_guard():
            for p in place_list:
                self.constructor_with_kwargs(p)

601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
    def test_copy_and_copy_to(self):
        print("Test_copy_and_copy_to")
        with _test_eager_guard():
            paddle.set_device("cpu")
            arr = np.ones([4, 16, 16, 32]).astype('float32')
            arr1 = np.zeros([4, 16]).astype('float32')
            arr2 = np.ones([4, 16, 16, 32]).astype('float32') + np.ones(
                [4, 16, 16, 32]).astype('float32')
            tensor = paddle.to_tensor(arr, core.VarDesc.VarType.FP32,
                                      core.CPUPlace())
            self.assertEqual(tensor.stop_gradient, True)
            tensor.stop_gradient = False
            print("Set persistable")
            tensor.persistable = False
            tensor1 = paddle.to_tensor(arr1, core.VarDesc.VarType.FP32,
                                       core.CPUPlace())
            tensor1.persistable = True
            self.assertEqual(tensor1.stop_gradient, True)
            self.assertTrue(np.array_equal(tensor.numpy(), arr))
            print("Test copy_")
            tensor.copy_(tensor1, True)
622
            self.assertEqual(tensor.persistable, False)
623 624 625 626 627 628 629 630 631 632 633 634
            self.assertEqual(tensor.shape, [4, 16])
            self.assertEqual(tensor.dtype, core.VarDesc.VarType.FP32)
            self.assertTrue(np.array_equal(tensor.numpy(), arr1))

            print("Test _copy_to")
            tensor2 = paddle.to_tensor(arr2, core.VarDesc.VarType.FP32,
                                       core.CPUPlace())
            self.assertTrue(np.array_equal(tensor2.numpy(), arr2))
            self.assertTrue(tensor2.place.is_cpu_place())
            tensor2.persistable = True
            tensor2.stop_gradient = False
            if core.is_compiled_with_cuda():
635
                tensor3 = tensor2._copy_to(core.CUDAPlace(0), True)
636
                self.assertTrue(np.array_equal(tensor3.numpy(), arr2))
J
Jiabin Yang 已提交
637 638
                self.assertEqual(tensor3.persistable, True)
                self.assertEqual(tensor3.stop_gradient, True)
639
                self.assertTrue(tensor3.place.is_gpu_place())
J
Jiabin Yang 已提交
640 641 642 643 644 645 646 647 648 649 650 651 652 653 654

                tensor4 = tensor2.cuda(0, True)
                self.assertTrue(np.array_equal(tensor4.numpy(), arr2))
                self.assertEqual(tensor4.persistable, True)
                self.assertEqual(tensor4.stop_gradient, False)
                self.assertTrue(tensor4.place.is_gpu_place())

                tensor5 = tensor4.cpu()
                self.assertTrue(np.array_equal(tensor5.numpy(), arr2))
                self.assertEqual(tensor5.persistable, True)
                self.assertEqual(tensor5.stop_gradient, False)
                self.assertTrue(tensor5.place.is_cpu_place())

                tensor10 = paddle.to_tensor([1, 2, 3], place='gpu_pinned')
                tensor11 = tensor10._copy_to(core.CUDAPlace(0), True)
655
                self.assertTrue(
J
Jiabin Yang 已提交
656
                    np.array_equal(tensor10.numpy(), tensor11.numpy()))
657
            else:
658
                tensor3 = tensor2._copy_to(core.CPUPlace(), True)
659
                self.assertTrue(np.array_equal(tensor3.numpy(), arr2))
J
Jiabin Yang 已提交
660 661
                self.assertEqual(tensor3.persistable, True)
                self.assertEqual(tensor3.stop_gradient, True)
662 663
                self.assertTrue(tensor3.place.is_cpu_place())

J
Jiabin Yang 已提交
664 665 666 667 668 669
                tensor4 = tensor2.cpu()
                self.assertTrue(np.array_equal(tensor4.numpy(), arr2))
                self.assertEqual(tensor4.persistable, True)
                self.assertEqual(tensor4.stop_gradient, False)
                self.assertTrue(tensor4.place.is_cpu_place())

670 671
    def test_share_buffer_to(self):
        with _test_eager_guard():
672 673 674 675 676 677 678 679
            arr = np.ones([4, 16, 16, 32]).astype('float32')
            arr1 = np.zeros([4, 16]).astype('float32')
            arr2 = np.ones([4, 16, 16, 32]).astype('float32') + np.ones(
                [4, 16, 16, 32]).astype('float32')
            tensor = None
            tensor2 = None
            tensor = paddle.to_tensor(arr, core.VarDesc.VarType.FP32,
                                      core.CPUPlace())
B
Baibaifan 已提交
680
            tensor3 = core.eager.Tensor(value=tensor, place=core.CPUPlace())
681 682 683 684 685 686
            if core.is_compiled_with_cuda():
                tensor2 = paddle.to_tensor(arr2, core.VarDesc.VarType.FP32,
                                           core.CUDAPlace(0))
            else:
                tensor2 = paddle.to_tensor(arr2, core.VarDesc.VarType.FP32,
                                           core.CPUPlace())
687
            self.assertTrue(np.array_equal(tensor.numpy(), arr))
688 689 690 691 692 693 694 695 696 697
            self.assertTrue(np.array_equal(tensor2.numpy(), arr2))
            tensor2._share_buffer_to(tensor)
            self.assertTrue(np.array_equal(tensor.numpy(), arr2))
            self.assertTrue(np.array_equal(tensor2.numpy(), arr2))
            self.assertTrue(tensor._is_shared_buffer_with(tensor2))
            self.assertTrue(tensor2._is_shared_buffer_with(tensor))
            tensor._share_buffer_to(tensor3)
            self.assertTrue(np.array_equal(tensor3.numpy(), arr2))
            self.assertTrue(tensor3._is_shared_buffer_with(tensor))

698 699 700 701 702 703 704 705 706 707
    def test_share_underline_tensor_to(self):
        with _test_eager_guard():
            arr = np.ones([4, 16, 16, 32]).astype('float32')
            arr1 = np.zeros([4, 16]).astype('float32')
            arr2 = np.ones([4, 16, 16, 32]).astype('float32') + np.ones(
                [4, 16, 16, 32]).astype('float32')
            tensor = None
            tensor2 = None
            tensor = paddle.to_tensor(arr, core.VarDesc.VarType.FP32,
                                      core.CPUPlace())
708
            tensor3 = core.eager.Tensor()
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
            if core.is_compiled_with_cuda():
                tensor2 = paddle.to_tensor(arr2, core.VarDesc.VarType.FP32,
                                           core.CUDAPlace(0))
            else:
                tensor2 = paddle.to_tensor(arr2, core.VarDesc.VarType.FP32,
                                           core.CPUPlace())
            self.assertTrue(np.array_equal(tensor.numpy(), arr))
            self.assertTrue(np.array_equal(tensor2.numpy(), arr2))
            tensor2._share_underline_tensor_to(tensor)
            self.assertTrue(np.array_equal(tensor.numpy(), arr2))
            self.assertTrue(np.array_equal(tensor2.numpy(), arr2))
            self.assertTrue(tensor._is_shared_underline_tensor_with(tensor2))
            self.assertTrue(tensor2._is_shared_underline_tensor_with(tensor))
            tensor._share_underline_tensor_to(tensor3)
            self.assertTrue(np.array_equal(tensor3.numpy(), arr2))
            self.assertTrue(tensor3._is_shared_underline_tensor_with(tensor))

726
    def test_properties(self):
J
Jiabin Yang 已提交
727 728
        print("Test_properties")
        with _test_eager_guard():
729 730
            paddle.set_device("cpu")
            arr = np.ones([4, 16, 16, 32]).astype('float32')
J
Jiabin Yang 已提交
731 732
            tensor = paddle.to_tensor(arr, core.VarDesc.VarType.FP32,
                                      core.CPUPlace())
733 734 735 736 737 738 739 740 741
            self.assertEqual(tensor.shape, [4, 16, 16, 32])
            tensor.name = 'tensor_name_test'
            self.assertEqual(tensor.name, 'tensor_name_test')
            self.assertEqual(tensor.persistable, False)
            tensor.persistable = True
            self.assertEqual(tensor.persistable, True)
            tensor.persistable = False
            self.assertEqual(tensor.persistable, False)
            self.assertTrue(tensor.place.is_cpu_place())
742
            self.assertEqual(tensor._place_str, 'Place(cpu)')
743 744 745 746 747
            self.assertEqual(tensor.stop_gradient, True)
            tensor.stop_gradient = False
            self.assertEqual(tensor.stop_gradient, False)
            tensor.stop_gradient = True
            self.assertEqual(tensor.stop_gradient, True)
748
            self.assertEqual(tensor.type, core.VarDesc.VarType.LOD_TENSOR)
749

J
Jiabin Yang 已提交
750 751
    def test_global_properties(self):
        print("Test_global_properties")
J
Jiabin Yang 已提交
752 753
        _disable_legacy_dygraph()
        self.assertTrue(in_dygraph_mode())
J
Jiabin Yang 已提交
754
        with _test_eager_guard():
J
Jiabin Yang 已提交
755 756
            self.assertTrue(in_dygraph_mode())
        self.assertFalse(in_dygraph_mode())
J
Jiabin Yang 已提交
757 758 759 760 761

    def test_place_guard(self):
        if core.is_compiled_with_cuda():
            paddle.set_device("gpu:0")
            with paddle.fluid.framework._dygraph_place_guard(core.CPUPlace()):
J
Jiabin Yang 已提交
762 763 764
                self.assertTrue(
                    isinstance(_current_expected_place(), type(core.CPUPlace(
                    ))))
J
Jiabin Yang 已提交
765 766 767
        else:
            paddle.set_device("cpu")
            with paddle.fluid.framework._dygraph_place_guard(core.CPUPlace()):
J
Jiabin Yang 已提交
768 769 770
                self.assertTrue(
                    isinstance(_current_expected_place(), type(core.CPUPlace(
                    ))))
J
Jiabin Yang 已提交
771

772 773 774 775
    def test_value(self):
        with _test_eager_guard():
            arr = np.random.rand(4, 16, 16, 32).astype('float64')

776
            egr_tensor0 = core.eager.Tensor(value=arr)
777 778 779 780 781 782 783 784 785 786 787 788 789 790
            self.assertEqual(egr_tensor0.persistable, False)
            self.assertTrue("generated" in egr_tensor0.name)
            self.assertEqual(egr_tensor0.shape, [4, 16, 16, 32])
            self.assertTrue(
                egr_tensor0.place._equals(
                    paddle.fluid.framework._current_expected_place()))
            self.assertEqual(egr_tensor0.dtype, core.VarDesc.VarType.FP64)
            self.assertEqual(egr_tensor0.stop_gradient, True)
            self.assertTrue(egr_tensor0.value().get_tensor()._dtype(),
                            core.VarDesc.VarType.FP64)
            self.assertTrue(egr_tensor0.value().get_tensor()._place(),
                            paddle.fluid.framework._current_expected_place())
            self.assertTrue(egr_tensor0.value().get_tensor()._is_initialized())

791 792 793
    def test_set_value(self):
        with _test_eager_guard():
            ori_arr = np.random.rand(4, 16, 16, 32).astype('float32')
794
            egr_tensor = core.eager.Tensor(value=ori_arr)
795 796 797 798 799
            self.assertEqual(egr_tensor.stop_gradient, True)
            self.assertEqual(egr_tensor.shape, [4, 16, 16, 32])
            self.assertTrue(np.array_equal(egr_tensor.numpy(), ori_arr))
            ori_place = egr_tensor.place

J
Jiabin Yang 已提交
800
            new_arr = np.random.rand(4, 16, 16, 32).astype('float32')
801 802
            self.assertFalse(np.array_equal(egr_tensor.numpy(), new_arr))

J
Jiabin Yang 已提交
803
            egr_tensor.set_value(new_arr)
804 805
            self.assertEqual(egr_tensor.stop_gradient, True)
            self.assertTrue(egr_tensor.place._equals(ori_place))
J
Jiabin Yang 已提交
806
            self.assertEqual(egr_tensor.shape, [4, 16, 16, 32])
807 808
            self.assertTrue(np.array_equal(egr_tensor.numpy(), new_arr))

J
Jiabin Yang 已提交
809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
    def test_sharding_related_api(self):
        with _test_eager_guard():
            arr0 = np.random.rand(4, 16, 16, 32).astype('float32')
            egr_tensor1 = core.eager.Tensor(arr0,
                                            core.CPUPlace(), True, False,
                                            "numpy_tensor1", False)
            self.assertEqual(egr_tensor1._numel(), 32768)
            self.assertEqual(egr_tensor1._slice(0, 2)._numel(), 16384)

    def test_copy_gradient_from(self):
        with _test_eager_guard():
            np_x = np.random.random((2, 2))
            np_y = np.random.random((2, 2))
            x = paddle.to_tensor(np_x, dtype="float64", stop_gradient=False)
            y = paddle.to_tensor(np_y, dtype="float64")
            out = x + x
            out.backward()
            x._copy_gradient_from(y)
            self.assertTrue(np.array_equal(x.grad.numpy(), np_y))

    def test_clear(self):
        with _test_eager_guard():
            np_x = np.random.random((3, 8, 8))
            x = paddle.to_tensor(np_x, dtype="float64")
            self.assertTrue(x._is_initialized())
            x._clear()
            self.assertFalse(x._is_initialized())

837

838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
class EagerParamBaseUsageTestCase(unittest.TestCase):
    def test_print(self):
        with _test_eager_guard():
            linear = paddle.nn.Linear(3, 3, bias_attr=False)
            print(linear.weight)

    def test_copy(self):
        with _test_eager_guard():
            linear = paddle.nn.Linear(1, 3)
            linear_copy = copy.deepcopy(linear)
            linear_copy2 = linear.weight._copy_to(core.CPUPlace(), True)
            self.assertTrue(
                np.array_equal(linear.weight.numpy(),
                               linear_copy.weight.numpy()))
            self.assertTrue(
                np.array_equal(linear.weight.numpy(), linear_copy2.numpy()))

    def func_fp16_initilaizer(self):
        paddle.set_default_dtype("float16")
        linear1 = paddle.nn.Linear(1, 3, bias_attr=False)
        linear2 = paddle.nn.Linear(
            1,
            3,
            bias_attr=False,
            weight_attr=paddle.fluid.initializer.Uniform())
        linear3 = paddle.nn.Linear(
            1,
            3,
            bias_attr=False,
            weight_attr=paddle.fluid.initializer.TruncatedNormalInitializer())
        linear4 = paddle.nn.Linear(
            1,
            3,
            bias_attr=False,
            weight_attr=paddle.fluid.initializer.MSRAInitializer())
        res = [
            linear1.weight.numpy(), linear2.weight.numpy(),
            linear3.weight.numpy(), linear4.weight.numpy()
        ]
        paddle.set_default_dtype("float32")
        return res

    def test_fp16_initializer(self):
        res1 = list()
        res2 = list()
        paddle.seed(102)
        paddle.framework.random._manual_program_seed(102)
        with _test_eager_guard():
            res1 = self.func_fp16_initilaizer()
        res2 = self.func_fp16_initilaizer()

        for i in range(len(res1)):
            self.assertTrue(np.array_equal(res1[i], res2[i]))

    def func_layer_helper_base(self, value):
        base = paddle.fluid.layer_helper_base.LayerHelperBase("test_layer",
                                                              "test_layer")
        return base.to_variable(value).numpy()

    def func_base_to_variable(self, value):
        paddle.fluid.dygraph.base.to_variable(value)

    def test_to_variable(self):
        value = np.random.rand(4, 16, 16, 32).astype('float32')
        res1 = None
        res3 = None
        with _test_eager_guard():
            res1 = self.func_layer_helper_base(value)
            res3 = self.func_base_to_variable(value)
        res2 = self.func_layer_helper_base(value)
        res4 = self.func_base_to_variable(value)
        self.assertTrue(np.array_equal(res1, res2))
        self.assertTrue(np.array_equal(res3, res4))

912
    def test_backward_with_single_tensor(self):
913 914
        with _test_eager_guard():
            arr4 = np.random.rand(4, 16, 16, 32).astype('float32')
915
            egr_tensor12 = core.eager.Tensor(arr4, core.CPUPlace())
916 917 918 919 920 921 922 923 924 925
            egr_tensor12.retain_grads()
            arr = np.ones([4, 16, 16, 32]).astype('float32')
            self.assertEqual(egr_tensor12.persistable, False)
            self.assertTrue("generated_tensor" in egr_tensor12.name)
            self.assertEqual(egr_tensor12.shape, [4, 16, 16, 32])
            self.assertEqual(egr_tensor12.dtype, core.VarDesc.VarType.FP32)
            self.assertEqual(egr_tensor12.stop_gradient, True)
            self.assertTrue(egr_tensor12.place._equals(paddle.fluid.CPUPlace()))
            self.assertTrue(np.array_equal(egr_tensor12.numpy(), arr4))
            self.assertTrue(np.array_equal(egr_tensor12.gradient(), None))
926
            egr_tensor12.stop_gradient = False
927 928
            egr_tensor12.backward()
            self.assertTrue(np.array_equal(egr_tensor12.gradient(), arr))
929

930 931 932 933 934 935 936
    def test_set_value(self):
        with _test_eager_guard():
            linear = paddle.nn.Linear(1, 3)
            ori_place = linear.weight.place
            new_weight = np.ones([1, 3]).astype('float32')
            self.assertFalse(np.array_equal(linear.weight.numpy(), new_weight))

J
Jiabin Yang 已提交
937
            linear.weight.set_value(new_weight)
938 939 940
            self.assertTrue(np.array_equal(linear.weight.numpy(), new_weight))
            self.assertTrue(linear.weight.place._equals(ori_place))

941

942 943 944 945
class EagerGuardTestCase(unittest.TestCase):
    def test__test_eager_guard(self):
        tracer = paddle.fluid.dygraph.tracer.Tracer()
        with _test_eager_guard(tracer):
J
Jiabin Yang 已提交
946
            self.assertTrue(in_dygraph_mode())
947 948


949 950
if __name__ == "__main__":
    unittest.main()