lite_mul_model_test.cc 3.2 KB
Newer Older
石晓伟 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <glog/logging.h>
#include <gtest/gtest.h>
#include <cmath>
18 19
#include <mutex>   // NOLINT
#include <thread>  // NOLINT
20
#include "gflags/gflags.h"
石晓伟 已提交
21 22 23 24 25 26

#include "paddle/fluid/inference/tests/api/tester_helper.h"

namespace paddle {
namespace inference {

27 28 29 30 31 32 33 34 35 36
int test_main(const AnalysisConfig& config, Barrier* barrier = nullptr) {
  static std::mutex mutex;
  std::unique_ptr<PaddlePredictor> predictor;
  {
    std::unique_lock<std::mutex> lock(mutex);
    predictor = std::move(CreatePaddlePredictor(config));
  }
  if (barrier) {
    barrier->Wait();
  }
石晓伟 已提交
37 38 39 40 41 42 43 44 45 46 47

  std::vector<PaddleTensor> inputs;
  std::vector<float> input({1});

  PaddleTensor in;
  in.shape = {1, 1};
  in.data = PaddleBuf(static_cast<void*>(input.data()), 1 * sizeof(float));
  in.dtype = PaddleDType::FLOAT32;
  inputs.emplace_back(in);

  std::vector<PaddleTensor> outputs;
48
  predictor->Run(inputs, &outputs);
石晓伟 已提交
49
  const std::vector<float> truth_values = {
50 51
      -0.00621776f, -0.00620937f, 0.00990623f,  -0.0039817f, -0.00074315f,
      0.61229795f,  -0.00491806f, -0.00068755f, 0.18409646f, 0.30090684f};
石晓伟 已提交
52 53 54 55 56 57
  const size_t expected_size = 1;
  EXPECT_EQ(outputs.size(), expected_size);
  float* data_o = static_cast<float*>(outputs[0].data.data());
  for (size_t j = 0; j < outputs[0].data.length() / sizeof(float); ++j) {
    EXPECT_LT(std::abs(data_o[j] - truth_values[j]), 10e-6);
  }
58 59 60
  return 0;
}

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
#ifdef PADDLE_WITH_XPU
TEST(AnalysisPredictor, native_xpu) {
  AnalysisConfig config;
  config.EnableXpu();
  config.SetModel(FLAGS_infer_model + "/" + "mul_model");
  test_main(config);
}
#endif

#ifdef LITE_SUBGRAPH_WITH_XPU
TEST(AnalysisPredictor, lite_xpu) {
  AnalysisConfig config;
  config.EnableXpu();
  config.SetModel(FLAGS_infer_model + "/" + "mul_model");
  config.EnableLiteEngine(paddle::AnalysisConfig::Precision::kFloat32);
}
#endif

79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
#ifdef PADDLE_WITH_CUDA
TEST(AnalysisPredictor, thread_local_stream) {
  const size_t thread_num = 5;
  std::vector<std::thread> threads(thread_num);
  Barrier barrier(thread_num);
  for (size_t i = 0; i < threads.size(); ++i) {
    threads[i] = std::thread([&barrier, i]() {
      AnalysisConfig config;
      config.EnableUseGpu(100, 0);
      config.SetModel(FLAGS_infer_model + "/" + "mul_model");
      config.EnableGpuMultiStream();
      test_main(config, &barrier);
    });
  }
  for (auto& th : threads) {
    th.join();
  }
}

TEST(AnalysisPredictor, lite_engine) {
  AnalysisConfig config;
  config.EnableUseGpu(100, 0);
  config.SetModel(FLAGS_infer_model + "/" + "mul_model");
  config.EnableLiteEngine(paddle::AnalysisConfig::Precision::kFloat32);
  test_main(config);
石晓伟 已提交
104
}
105
#endif
石晓伟 已提交
106 107 108

}  // namespace inference
}  // namespace paddle