adagrad_op.cc 5.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/adagrad_op.h"
16
#include <vector>
17

Q
QI JUN 已提交
18 19
#include <cmath>

Y
Yi Wang 已提交
20 21
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/selected_rows_functor.h"
Q
QI JUN 已提交
22

23 24 25 26 27 28 29
namespace paddle {
namespace operators {

class AdagradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

Q
QI JUN 已提交
30
  void InferShape(framework::InferShapeContext* ctx) const override {
K
Kexin Zhao 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
    PADDLE_ENFORCE(ctx->HasInput("Param"),
                   "Input(Param) of AdagradOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Grad"),
                   "Input(Grad) of AdagradOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Moment"),
                   "Input(Moment) of AdagradOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("LearningRate"),
                   "Input(LearningRate) of AdagradOp should not be null.");

    PADDLE_ENFORCE(ctx->HasOutput("ParamOut"),
                   "Output(ParamOut) of AdagradOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("MomentOut"),
                   "Output(MomentOut) of AdagradOp should not be null.");

    auto lr_dims = ctx->GetInputDim("LearningRate");
46
    PADDLE_ENFORCE_EQ(framework::product(lr_dims), 1,
K
Kexin Zhao 已提交
47 48
                      "LearningRate should have one element");
    auto param_dims = ctx->GetInputDim("Param");
49
    PADDLE_ENFORCE_EQ(
K
Kexin Zhao 已提交
50 51
        param_dims, ctx->GetInputDim("Grad"),
        "Param and Grad input of AdagradOp should have the same dimension.");
52
    PADDLE_ENFORCE_EQ(
K
Kexin Zhao 已提交
53 54
        param_dims, ctx->GetInputDim("Moment"),
        "Param and Moment input of AdagradOp should have the same dimension.");
55

K
Kexin Zhao 已提交
56 57
    ctx->SetOutputDim("ParamOut", param_dims);
    ctx->SetOutputDim("MomentOut", param_dims);
58 59 60 61 62
  }
};

class AdagradOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
63
  AdagradOpMaker(OpProto* proto, OpAttrChecker* op_checker)
64
      : OpProtoAndCheckerMaker(proto, op_checker) {
K
Kexin Zhao 已提交
65 66 67 68 69 70 71 72 73 74 75 76
    AddInput("Param", "(Tensor) Input parameter");
    AddInput("Grad", "(Tensor) Input gradient");
    AddInput("Moment", "(Tensor) Second moment");
    AddInput("LearningRate", "(Tensor) Learning rate");

    AddOutput("ParamOut", "(Tensor) Output parameter");
    AddOutput("MomentOut", "(Tensor) Output second moment");

    AddAttr<float>("epsilon",
                   "(float, default 1.0e-6) "
                   "Constant for numerical stability")
        .SetDefault(1.0e-6f);
77 78 79 80
    AddComment(R"DOC(

Adaptive Gradient Algorithm (Adagrad).

81 82
The update is done as follows:

83 84
$$moment\_out = moment + grad * grad \\
param\_out = param - \frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}
85
$$
86 87

The original paper(http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)
88 89 90
does not have the epsilon attribute. It is added here in our implementation
as also proposed here: http://cs231n.github.io/neural-networks-3/#ada
for numerical stability to avoid the division by zero error.
91 92 93 94

)DOC");
  }
};
Q
QI JUN 已提交
95 96 97 98 99 100 101 102

namespace {
size_t FindPos(const std::vector<int64_t>& rows, int64_t value) {
  return std::find(rows.begin(), rows.end(), value) - rows.begin();
}
}  // namespace

template <typename T>
Q
QI JUN 已提交
103 104
struct SparseAdagradFunctor<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& context,
Q
QI JUN 已提交
105 106 107 108 109
                  const framework::SelectedRows& grad,
                  const framework::Tensor& learning_rate, T epsilon,
                  framework::Tensor* moment, framework::Tensor* param) {
    // 1. g_m.rows = set(g.rows)
    auto grad_width = grad.value().dims()[1];
T
wip  
typhoonzero 已提交
110 111 112 113
    math::scatter::MergeAdd<platform::CPUDeviceContext, T> merge_func;
    auto grad_merge = merge_func(context, grad);
    auto& merge_rows = grad_merge.rows();
    auto* grad_merge_data = grad_merge.mutable_value()->template data<T>();
Q
QI JUN 已提交
114 115

    // 2. m += g_m * g_m
T
wip  
typhoonzero 已提交
116 117
    math::scatter::Mul<platform::CPUDeviceContext, T> sqare_func;
    auto grad_square = sqare_func(context, grad_merge, grad_merge);
Q
QI JUN 已提交
118

Q
QI JUN 已提交
119
    math::SelectedRowsAddToTensor<platform::CPUDeviceContext, T> functor;
T
wip  
typhoonzero 已提交
120
    functor(context, grad_square, moment);
Q
QI JUN 已提交
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136

    // 3. update parameter
    auto* lr = learning_rate.data<T>();
    auto* param_data = param->data<T>();
    auto* moment_data = moment->data<T>();

    for (size_t i = 0; i < merge_rows.size(); i++) {
      for (int64_t j = 0; j < grad_width; j++) {
        param_data[merge_rows[i] * grad_width + j] -=
            lr[0] * grad_merge_data[i * grad_width + j] /
            (std::sqrt(moment_data[merge_rows[i] * grad_width + j]) + epsilon);
      }
    }
  }
};

Q
QI JUN 已提交
137 138
template struct SparseAdagradFunctor<platform::CPUDeviceContext, float>;
template struct SparseAdagradFunctor<platform::CPUDeviceContext, double>;
139 140 141 142 143
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_WITHOUT_GRADIENT(adagrad, ops::AdagradOp, ops::AdagradOpMaker);
Q
QI JUN 已提交
144
REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
145 146
    adagrad, ops::AdagradOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::AdagradOpKernel<paddle::platform::CPUDeviceContext, double>);