TrainingAlgorithmOp.cu 12.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
H
hedaoyuan 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
H
hedaoyuan 已提交
14 15 16

#include "BaseMatrix.h"
#include "TrainingAlgorithmOp.h"
L
liaogang 已提交
17
#include "paddle/utils/Logging.h"
H
hedaoyuan 已提交
18

H
hedaoyuan 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
#if __cplusplus > 199711L

#include "TensorAssign.h"

namespace paddle {

void sparseMomentumApply(BaseMatrix& value,
                         BaseMatrix& grad,
                         BaseMatrix& momU,
                         BaseMatrix& momV,
                         real alpha,
                         real beta,
                         real gamma,
                         real tau,
                         real learningRate) {
  auto expr1 = momU.lazyAssign(momU - (alpha * gamma * learningRate) * grad);
L
liaogang 已提交
35 36 37 38
  auto expr2 =
      momV.lazyAssign(momV + (tau * alpha * gamma * learningRate) * grad);
  auto expr3 = value.lazyAssign((tau / beta + (real)1 / alpha) * momU +
                                ((real)1 / beta) * momV);
H
hedaoyuan 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

  AssignEvaluate(expr1, expr2, expr3);
}

void adadeltaApply(BaseMatrix& value,
                   BaseMatrix& grad,
                   BaseMatrix& mom,
                   BaseMatrix& accum,
                   BaseMatrix& accum_update,
                   BaseMatrix& lr,
                   real rou,
                   real epsilon,
                   real learningRate,
                   real momentum,
                   real decayRate) {
  auto expr1 = accum.lazyAssign(rou * accum + ((real)1 - rou) * grad.square());
L
liaogang 已提交
55 56 57 58 59 60
  auto expr2 =
      lr.lazyAssign(((accum_update + epsilon) / (accum + epsilon)).sqrt());
  auto expr3 = accum_update.lazyAssign(rou * accum_update +
                                       ((real)1 - rou) * (grad * lr).square());
  auto expr4 = mom.lazyAssign(mom * momentum -
                              learningRate * lr * (grad + value * decayRate));
H
hedaoyuan 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
  auto expr5 = value.lazyAssign(value + mom);

  AssignEvaluate(expr1, expr2, expr3, expr4, expr5);
}

void adagradApply(BaseMatrix& value,
                  BaseMatrix& grad,
                  BaseMatrix& mom,
                  BaseMatrix& accum_buffer,
                  BaseMatrix& accum,
                  BaseMatrix& lr,
                  real epsilon,
                  real learningRate,
                  real momentum,
                  real decayRate) {
  auto expr1 = accum.lazyAssign(accum + grad.square());
L
liaogang 已提交
77 78 79 80
  auto expr2 =
      lr.lazyAssign((accum_buffer + accum + epsilon).sqrt().reciprocal());
  auto expr3 = mom.lazyAssign(mom * momentum -
                              learningRate * lr * (grad + value * decayRate));
H
hedaoyuan 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
  auto expr4 = value.lazyAssign(value + mom);

  AssignEvaluate(expr1, expr2, expr3, expr4);
}

void rmspropApply(BaseMatrix& value,
                  BaseMatrix& grad,
                  BaseMatrix& mom,
                  BaseMatrix& g,
                  BaseMatrix& f,
                  BaseMatrix& lr,
                  real accumulatedRou,
                  real rou,
                  real epsilon,
                  real learningRate,
                  real momentum,
                  real decayRate,
                  bool firstTime) {
  auto expr2 = f.lazyAssign(accumulatedRou * f + ((real)1 - rou) * grad);
  auto expr3 = lr.lazyAssign((g - f.square() + epsilon).sqrt().reciprocal());
L
liaogang 已提交
101 102
  auto expr4 = mom.lazyAssign(mom * momentum -
                              learningRate * lr * (grad + value * decayRate));
H
hedaoyuan 已提交
103 104 105 106 107 108 109
  auto expr5 = value.lazyAssign(value + mom);

  if (firstTime) {
    auto expr1 = g.lazyAssign(accumulatedRou * g + grad.square());

    AssignEvaluate(expr1, expr2, expr3, expr4, expr5);
  } else {
L
liaogang 已提交
110 111
    auto expr1 =
        g.lazyAssign(accumulatedRou * g + ((real)1 - rou) * grad.square());
H
hedaoyuan 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129

    AssignEvaluate(expr1, expr2, expr3, expr4, expr5);
  }
}

void decayedAdagradApply(BaseMatrix& value,
                         BaseMatrix& grad,
                         BaseMatrix& mom,
                         BaseMatrix& accum,
                         BaseMatrix& lr,
                         real accumulatedRou,
                         real rou,
                         real epsilon,
                         real learningRate,
                         real momentum,
                         real decayRate,
                         bool firstTime) {
  auto expr2 = lr.lazyAssign((accum + epsilon).sqrt().reciprocal());
L
liaogang 已提交
130 131
  auto expr3 = mom.lazyAssign(mom * momentum -
                              learningRate * lr * (grad + value * decayRate));
H
hedaoyuan 已提交
132 133 134 135 136 137 138
  auto expr4 = value.lazyAssign(value + mom);

  if (firstTime) {
    auto expr1 = accum.lazyAssign(accumulatedRou * accum + grad.square());

    AssignEvaluate(expr1, expr2, expr3, expr4);
  } else {
L
liaogang 已提交
139 140
    auto expr1 = accum.lazyAssign(accumulatedRou * accum +
                                  ((real)1 - rou) * grad.square());
H
hedaoyuan 已提交
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155

    AssignEvaluate(expr1, expr2, expr3, expr4);
  }
}

void adamApply(BaseMatrix& value,
               BaseMatrix& grad,
               BaseMatrix& mom,  // firse moment
               BaseMatrix& v,    // second moment
               real beta1,
               real beta2,
               real beta1_power,
               real beta2_power,
               real epsilon,
               real learningRate) {
L
liaogang 已提交
156 157
  real alpha =
      learningRate * std::sqrt((real)1 - beta2_power) / ((real)1 - beta1_power);
H
hedaoyuan 已提交
158 159 160

  auto expr1 = mom.lazyAssign(beta1 * mom + ((real)1 - beta1) * grad);
  auto expr2 = v.lazyAssign(beta2 * v + ((real)1 - beta2) * grad.square());
L
liaogang 已提交
161
  auto expr3 = value.lazyAssign(value - (mom * alpha) / (v.sqrt() + epsilon));
H
hedaoyuan 已提交
162 163 164 165 166 167 168 169 170 171 172 173 174

  AssignEvaluate(expr1, expr2, expr3);
}

void adamaxApply(BaseMatrix& value,
                 BaseMatrix& grad,
                 BaseMatrix& mom,  // firse moment
                 BaseMatrix& u,    // weighted infinity norm
                 real beta1,
                 real beta2,
                 int64_t step,
                 real alpha) {
  auto expr1 = mom.lazyAssign(beta1 * mom + ((real)1 - beta1) * grad);
L
liaogang 已提交
175 176
  auto expr2 =
      u.lazyAssign((beta2 * u > grad.abs()).condition(beta2 * u, grad.abs()));
H
hedaoyuan 已提交
177
  auto expr3 = value.lazyAssign(
L
liaogang 已提交
178
      value - (alpha / ((real)1 - (real)std::pow(beta1, step))) * (mom / u));
H
hedaoyuan 已提交
179 180 181 182 183 184 185 186

  AssignEvaluate(expr1, expr2, expr3);
}

}  // namespace paddle

#else

H
hedaoyuan 已提交
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
namespace paddle {

void sparseMomentumApply(BaseMatrix& value,
                         BaseMatrix& grad,
                         BaseMatrix& momU,
                         BaseMatrix& momV,
                         real alpha,
                         real beta,
                         real gamma,
                         real tau,
                         real learningRate) {
  /**
   * \alpha_t = \alpha_{t-1} / k
   * \beta_t = \beta_{t-1} / (1 + \lambda\gamma_t)
   * u_t = u_{t-1} - \alpha_t \gamma_t g_t
   * v_t = v_{t-1} + \tau_{t-1} \alpha_t \gamma_t g_t
   * \tau_t = \tau_{t-1} + \beta_t / \alpha_t
   */
  momU -= (alpha * gamma * learningRate) * grad;
  momV += (tau * alpha * gamma * learningRate) * grad;
  value = (tau / beta + (real)1 / alpha) * momU + ((real)1 / beta) * momV;
}

void adadeltaApply(BaseMatrix& value,
                   BaseMatrix& grad,
                   BaseMatrix& mom,
                   BaseMatrix& accum,
                   BaseMatrix& accum_update,
                   BaseMatrix& lr,
                   real rou,
                   real epsilon,
                   real learningRate,
                   real momentum,
                   real decayRate) {
  // E(g_t^2) = \rou * E(g_{t-1}^2) + (1-\rou) * g^2
  accum = rou * accum + ((real)1 - rou) * grad.square();

  // learn_rate: sqrt(( E(dx_{t-1}^2) + epsilon ) / ( E(g_t^2) + epsilon ))
  lr = ((accum_update + epsilon) / (accum + epsilon)).sqrt();

  // E(dx_t^2) = \rou * E(dx_{t-1}^2) + (1-\rou) * (-g*learn_rate)^2
  accum_update = rou * accum_update + ((real)1 - rou) * (grad * lr).square();

  mom = mom * momentum - learningRate * lr * (grad + value * decayRate);
  value += mom;
}

void adagradApply(BaseMatrix& value,
                  BaseMatrix& grad,
                  BaseMatrix& mom,
                  BaseMatrix& accum_buffer,
                  BaseMatrix& accum,
                  BaseMatrix& lr,
                  real epsilon,
                  real learningRate,
                  real momentum,
                  real decayRate) {
  accum += grad.square();
  lr = (accum_buffer + accum + epsilon).sqrt().reciprocal();
  mom = mom * momentum - learningRate * lr * (grad + value * decayRate);
  value += mom;
}

void rmspropApply(BaseMatrix& value,
                  BaseMatrix& grad,
                  BaseMatrix& mom,
                  BaseMatrix& g,
                  BaseMatrix& f,
                  BaseMatrix& lr,
                  real accumulatedRou,
                  real rou,
                  real epsilon,
                  real learningRate,
                  real momentum,
                  real decayRate,
                  bool firstTime) {
  // E(g_t^2) = \rou * E(g_{t-1}^2) + (1-\rou) * g^2
  // For the first time update, make the sum be the current square
  // so that the initial estimation of E(g_t^2) will not be too small.
  if (firstTime) {
    g = accumulatedRou * g + grad.square();
  } else {
    g = accumulatedRou * g + ((real)1 - rou) * grad.square();
  }

  // E(f_t) = \rou * E(f_{t-1}) + (1-\rou) * g
  f = accumulatedRou * f + ((real)1 - rou) * grad;

  // learn_rate = 1/sqrt( ( E(g_t^2) - (E(f_t))^2 + epsilon )
  // Basiclly if the sign of the gradient changes more often,
  // the learning rate will be decreased.
  lr = (g - f.square() + epsilon).sqrt().reciprocal();

  mom = mom * momentum - learningRate * lr * (grad + value * decayRate);
  value += mom;
}

void decayedAdagradApply(BaseMatrix& value,
                         BaseMatrix& grad,
                         BaseMatrix& mom,
                         BaseMatrix& accum,
                         BaseMatrix& lr,
                         real accumulatedRou,
                         real rou,
                         real epsilon,
                         real learningRate,
                         real momentum,
                         real decayRate,
                         bool firstTime) {
  // E(g_t^2) = \rou * E(g_{t-1}^2) + (1-\rou) * g^2
  // For the first time update, make the sum be the current square
  // so that the initial estimation of E(g_t^2) will not be too small.
  if (firstTime) {
    accum = accumulatedRou * accum + grad.square();
  } else {
    accum = accumulatedRou * accum + ((real)1 - rou) * grad.square();
  }

  // learn_rate = 1/sqrt( ( E(g_t^2) + epsilon )
  // Basiclly if the bigger the magnitude gradient is,
  // the smaller the learning rate will be.
  lr = (accum + epsilon).sqrt().reciprocal();

  mom = mom * momentum - learningRate * lr * (grad + value * decayRate);
  value += mom;
}

void adamApply(BaseMatrix& value,
               BaseMatrix& grad,
               BaseMatrix& mom,  // firse moment
               BaseMatrix& v,    // second moment
               real beta1,
               real beta2,
               real beta1_power,
               real beta2_power,
               real epsilon,
               real learningRate) {
L
liaogang 已提交
324 325
  real alpha =
      learningRate * std::sqrt((real)1 - beta2_power) / ((real)1 - beta1_power);
H
hedaoyuan 已提交
326 327 328 329 330 331 332

  // m_t = \beta_1 * m_{t-1} + (1-\beta_1)* g_t;
  mom = beta1 * mom + ((real)1 - beta1) * grad;

  // v_t = \beta_2 * v_{t-1} + (1-\beta_2)* g_{t-1}^2
  v = beta2 * v + ((real)1 - beta2) * grad.square();

L
liaogang 已提交
333
  value -= (mom * alpha) / (v.sqrt() + epsilon);
H
hedaoyuan 已提交
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
}

void adamaxApply(BaseMatrix& value,
                 BaseMatrix& grad,
                 BaseMatrix& mom,  // firse moment
                 BaseMatrix& u,    // weighted infinity norm
                 real beta1,
                 real beta2,
                 int64_t step,
                 real alpha) {
  // m_t = \beta_1 * m_{t-1} + (1-\beta_1)* g_t;
  mom = beta1 * mom + ((real)1 - beta1) * grad;

  // u_t = max(\beta_2*u_{t-1}, abs(g_t))
  u = (beta2 * u > grad.abs()).condition(beta2 * u, grad.abs());

  // \theta_t = \theta_{t-1} - (\alpha/(1-\beta_1^t))*m_t/u_t
  value -= (alpha / ((real)1 - (real)std::pow(beta1, step))) * (mom / u);
}

}  // namespace paddle
H
hedaoyuan 已提交
355 356

#endif