SparseRowMatrix.cpp 8.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "SparseRowMatrix.h"
#include "CpuSparseMatrix.h"

#include <algorithm>

#include "paddle/utils/Logging.h"

#include "SIMDFunctions.h"

#include "paddle/utils/Thread.h"
L
liaogang 已提交
25
#include "paddle/utils/Util.h"
Z
zhangjinchao01 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

namespace paddle {

const unsigned int SparseRowCpuMatrix::kUnusedId_ = -1U;

void SparseRowCpuMatrix::init(size_t height, size_t width) {
  height_ = height;
  if (!indexDictHandle_) {
    indexDictHandle_.reset(new IndexDict);
    indexDictHandle_->globalIndices.assign(height, kUnusedId_);
  }
  localIndices_ = &indexDictHandle_->localIndices;
  globalIndices_ = indexDictHandle_->globalIndices.data();
}

41 42 43
void SparseRowCpuMatrix::mul(CpuSparseMatrix* a,
                             CpuMatrix* b,
                             real scaleAB,
Z
zhangjinchao01 已提交
44 45 46 47 48 49 50 51 52
                             real scaleT) {
  CpuMatrix::mul<CpuMatrix, SparseRowCpuMatrix>(a, b, this, scaleAB, scaleT);
}

void SparseRowCpuMatrix::copyFrom(const real* src, size_t size) {
  LOG(FATAL) << "This should not be called";
}

void SparseRowCpuMatrix::zeroMem() {
53
  apply([](real* buf, size_t len) { memset(buf, 0, sizeof(real) * len); });
Z
zhangjinchao01 已提交
54 55 56
  clearRows();
}

57
void SparseRowCpuMatrix::applyL1(real learningRate, real decayRate) {
Z
zhangjinchao01 已提交
58
  apply([=](real* buf, size_t len) {
59 60 61 62
    CpuVector value(0, nullptr);
    value.subVecFrom(buf, 0, len);
    value.applyL1(learningRate, decayRate);
  });
Z
zhangjinchao01 已提交
63 64
}

65 66 67 68 69 70 71
void SparseRowCpuMatrix::sgdUpdate(BaseMatrix& value,
                                   IVector& t0,
                                   real learningRate,
                                   int currentTime,
                                   real decayRate,
                                   bool useL1,
                                   bool fini) {
Z
zhangjinchao01 已提交
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
  std::vector<unsigned int>& localIndices = indexDictHandle_->localIndices;

  // t0 and value are vectors
  CHECK_EQ(t0.getSize(), this->height_);
  CHECK_EQ(value.width_, this->height_ * this->width_);

  if (decayRate == 0.0f) {
    if (fini) {
      return;
    }

    for (size_t i = 0; i < localIndices.size(); ++i) {
      real* g = getLocalRow(i);
      real* v = value.rowBuf(localIndices[i]);
      for (size_t j = 0; j < this->width_; ++j) {
        v[j] -= learningRate * g[j];
      }
    }
    return;
  }  // else

  if (useL1) {  // L1 decay
    if (fini) {
      for (size_t i = 0; i < this->height_; ++i) {
        real* v = value.rowBuf(i);
        int* t = t0.getData() + i;
        if (t[0] < currentTime) {
          // W(t0) -> W(t+1)
          int tDiff = currentTime - t[0];
          real delta = tDiff * learningRate * decayRate;
          simd::decayL1(v, v, delta, this->width_);
        }
      }
      return;
    }  // else

    for (size_t i = 0; i < localIndices.size(); ++i) {
      real* g = getLocalRow(i);
      real* v = value.rowBuf(localIndices[i]);
      int* t = t0.getData() + localIndices[i];
      if (t[0] < currentTime) {
        // W(t0) -> W(t)
        int tDiff = currentTime - t[0];
        real delta = tDiff * learningRate * decayRate;
        simd::decayL1(v, v, delta, this->width_);
      }

      // W(t) -> W(t+1)
      for (size_t j = 0; j < this->width_; ++j) {
        v[j] -= learningRate * g[j];
      }
123
      simd::decayL1(v, v, learningRate * decayRate, this->width_);
Z
zhangjinchao01 已提交
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171

      // state update to t+1
      t[0] = currentTime + 1;
    }

  } else {  // L2 decay
    if (fini) {
      for (size_t i = 0; i < this->height_; ++i) {
        real* v = value.rowBuf(i);
        int* t = t0.getData() + i;
        if (t[0] < currentTime) {
          // W(t0) -> W(t+1)
          int tDiff = currentTime - t[0];
          real recip = 1.0f / (1.0f + tDiff * learningRate * decayRate);
          for (size_t j = 0; j < this->width_; ++j) {
            v[j] *= recip;
          }
        }
      }
      return;
    }  // else

    real recipDecay = 1.0f / (1.0f + learningRate * decayRate);

    for (size_t i = 0; i < localIndices.size(); ++i) {
      real* g = getLocalRow(i);
      real* v = value.rowBuf(localIndices[i]);
      int* t = t0.getData() + localIndices[i];
      if (t[0] < currentTime) {
        // W(t0) -> W(t)
        int tDiff = currentTime - t[0];
        real recip = 1.0f / (1.0f + tDiff * learningRate * decayRate);
        for (size_t j = 0; j < this->width_; ++j) {
          v[j] *= recip;
        }
      }

      // W(t) -> W(t+1)
      for (size_t j = 0; j < this->width_; ++j) {
        v[j] = recipDecay * (v[j] - learningRate * g[j]);
      }

      // state update to t+1
      t[0] = currentTime + 1;
    }
  }
}

172 173 174 175
void SparseRowCpuMatrix::addTo(BaseMatrix& dest,
                               std::vector<uint32_t>& ids,
                               size_t tid,
                               size_t numThreads) {
Z
zhangjinchao01 已提交
176 177 178 179 180 181 182
  CHECK(!dest.useGpu_);
  CHECK_EQ(dest.height_ * dest.width_, this->height_ * this->width_);

  std::vector<unsigned int>& localIndices = indexDictHandle_->localIndices;
  for (size_t i = 0; i < localIndices.size(); ++i) {
    uint32_t id = localIndices[i];
    if (id % numThreads == tid) {
183
      simd::addTo(dest.rowBuf(id), getLocalRow(i), this->width_);
Z
zhangjinchao01 已提交
184 185 186 187 188
      ids.push_back(id);
    }
  }
}

189 190
void SparseRowCpuMatrix::addTo(SparseRowCpuMatrix& dest,
                               size_t tid,
Z
zhangjinchao01 已提交
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
                               size_t numThreads) {
  CHECK(!dest.useGpu_);
  CHECK_EQ(dest.height_ * dest.width_, this->height_ * this->width_);

  std::vector<unsigned int>& localIndices = indexDictHandle_->localIndices;
  for (size_t i = 0; i < localIndices.size(); ++i) {
    uint32_t id = localIndices[i];
    if (id % numThreads == tid) {
      dest.checkIndex(id);
      simd::addTo(dest.getRow(id), getLocalRow(i), this->width_);
    }
  }
}

void SparseRowCpuMatrix::zeroMemThread(size_t tid, size_t numThreads) {
  std::vector<unsigned int>& localIndices = indexDictHandle_->localIndices;
  for (size_t i = 0; i < localIndices.size(); ++i) {
    uint32_t id = localIndices[i];
    if (id % numThreads == tid) {
      memset(this->getLocalRow(i), 0, this->width_ * sizeof(real));
    }
  }
}

215 216 217 218 219 220
void SparseAutoGrowRowCpuMatrix::mul(CpuSparseMatrix* a,
                                     CpuMatrix* b,
                                     real scaleAB,
                                     real scaleT) {
  CpuMatrix::mul<CpuMatrix, SparseAutoGrowRowCpuMatrix>(
      a, b, this, scaleAB, scaleT);
Z
zhangjinchao01 已提交
221 222
}

223 224 225
void CacheRowCpuMatrix::mul(CpuSparseMatrix* a,
                            CpuMatrix* b,
                            real scaleAB,
Z
zhangjinchao01 已提交
226 227 228 229 230 231
                            real scaleT) {
  CpuMatrix::mul<CpuMatrix, CacheRowCpuMatrix>(a, b, this, scaleAB, scaleT);
}

void SparsePrefetchRowCpuMatrix::addRows(const unsigned int* ids, size_t len) {
  std::vector<unsigned int>& localIndices = indexDictHandle_->localIndices;
232
  for (size_t i = 0; i < len; i++) {
233
    CHECK_LT(*(ids + i), this->getHeight())
234 235 236
        << "id:" << *(ids + i) << "Height:" << this->getHeight()
        << "sparse id value exceeds the max input dimension, "
        << "it could be caused invalid input data samples";
237
  }
Z
zhangjinchao01 已提交
238 239 240 241 242
  localIndices.insert(localIndices.end(), ids, ids + len);
}

void SparsePrefetchRowCpuMatrix::addRows(MatrixPtr input) {
  CpuSparseMatrix* mat = dynamic_cast<CpuSparseMatrix*>(input.get());
243
  CHECK(mat) << "only support sparse matrix";
Z
zhangjinchao01 已提交
244 245 246 247 248 249 250 251 252 253
  addRows(reinterpret_cast<const unsigned int*>(mat->getCols()),
          mat->getElementCnt());
}

void SparsePrefetchRowCpuMatrix::addRows(IVectorPtr ids) {
  std::vector<unsigned int>& localIndices = indexDictHandle_->localIndices;
  size_t numSamples = ids->getSize();
  int* index = ids->getData();
  for (size_t i = 0; i < numSamples; ++i) {
    if (index[i] == -1) continue;
254 255 256

    unsigned int id = (unsigned int)index[i];
    CHECK_LT(id, this->getHeight())
257 258 259
        << "id:" << id << "Height:" << this->getHeight()
        << "sparse id value exceeds the max input dimension, "
        << "it could be caused invalid input data samples";
260
    localIndices.push_back(id);
Z
zhangjinchao01 已提交
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
  }
}

void SparsePrefetchRowCpuMatrix::setupIndices() {
  auto& localIndices = indexDictHandle_->localIndices;
  uniqueIds(localIndices);
  // for each sparse row
  for (size_t id = 0; id < localIndices.size(); ++id) {
    globalIndices_[localIndices[id]] = id;  // sparse row -> local id
  }
  checkStoreSize();
}

void SparseRowCpuMatrix::checkIndices() {
  std::vector<unsigned int>& localIndices = indexDictHandle_->localIndices;
  for (size_t i = 0; i < localIndices.size(); ++i) {
    CHECK_EQ(globalIndices_[localIndices[i]], i);
  }
  checkStoreSize();
}

}  // namespace paddle