rnn.py 77.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

F
Feiyu Chan 已提交
15
import math
16
from collections.abc import Sequence
17
from functools import partial, reduce
F
Feiyu Chan 已提交
18

19
import numpy as np
20

F
Feiyu Chan 已提交
21
import paddle
22
from paddle import _C_ops, _legacy_C_ops, framework, in_dynamic_mode
23
from paddle.common_ops_import import Variable
24
from paddle.fluid.data_feeder import check_type, check_variable_and_dtype
25 26 27 28 29 30
from paddle.fluid.framework import (
    _non_static_mode,
    default_startup_program,
    in_dygraph_mode,
    program_guard,
)
31
from paddle.fluid.layers import control_flow, sequence_lod, utils
32
from paddle.fluid.layers.utils import flatten, map_structure
Z
zhiboniu 已提交
33
from paddle.framework import core
34 35 36
from paddle.nn import Layer
from paddle.nn import functional as F
from paddle.nn import initializer as I
L
liu zhengxi 已提交
37
from paddle.tensor.manipulation import tensor_array_to_tensor
38

39
from .container import LayerList
Z
zhiboniu 已提交
40

41 42
__all__ = []

F
Feiyu Chan 已提交
43

44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
def rnn(
    cell,
    inputs,
    initial_states=None,
    sequence_length=None,
    time_major=False,
    is_reverse=False,
    **kwargs
):
    r"""
    rnn creates a recurrent neural network specified by RNNCell `cell`,
    which performs :code:`cell.call()` (for dygraph mode :code:`cell.forward`)
    repeatedly until reaches to the maximum length of `inputs`.

    Parameters:
        cell(RNNCellBase): An instance of `RNNCellBase`.
        inputs(Tensor): the input sequences.
            If time_major is True, the shape is
            `[time_steps, batch_size, input_size]`
            else the shape is `[batch_size, time_steps, input_size]`.
        initial_states(Tensor|tuple|list, optional): the initial state of the
            rnn cell. Tensor or a possibly nested structure of tensors. If not
            provided, `cell.get_initial_states` would be called to produce
            the initial state. Defaults to None.
        sequence_length (Tensor, optional): shape `[batch_size]`, dtype: int64
            or int32. The valid lengths of input sequences. Defaults to None.
            If `sequence_length` is not None, the inputs are treated as
            padded sequences. In each input sequence, elements whose time step
            index are not less than the valid length are treated as paddings.
        time_major (bool, optional): Whether the first dimension of the input means the
            time steps. Defaults to False.
        is_reverse (bool, optional): Indicate whether to calculate in the reverse
            order of input sequences. Defaults to False.
        **kwargs: Additional keyword arguments to pass to `forward` of the cell.

    Returns:
        outputs (Tensor|list|tuple): the output sequence. Tensor or nested
            structure of Tensors.
            If `time_major` is True, the shape of each tensor in outpus is
            `[time_steps, batch_size, hidden_size]`, else
            `[batch_size, time_steps, hidden_size]`.
        final_states (Tensor|list|tuple): final states. A (possibly nested structure of)
            tensor[s], representing the final state for RNN. It has the same
            structure of intial state. Each tensor in final states has the same
            shape and dtype as the corresponding tensor in initial states.

    Examples:

        .. code-block:: python

            import paddle
            paddle.disable_static()

            cell = paddle.nn.SimpleRNNCell(16, 32)

            inputs = paddle.rand((4, 23, 16))
            prev_h = paddle.randn((4, 32))
            outputs, final_states = paddle.nn.layer.rnn(cell, inputs, prev_h)

    """

    if _non_static_mode():
        return _rnn_dynamic_graph(
            cell,
            inputs,
            initial_states,
            sequence_length,
            time_major,
            is_reverse,
            **kwargs
        )
    else:
        return _rnn_static_graph(
            cell,
            inputs,
            initial_states,
            sequence_length,
            time_major,
            is_reverse,
            **kwargs
        )


class ArrayWrapper:
    def __init__(self, x):
        self.array = [x]

    def append(self, x):
        self.array.append(x)
        return self

    def __getitem__(self, item):
        return self.array.__getitem__(item)


def _maybe_copy(state, new_state, step_mask):
    """update rnn state or just pass the old state through"""
    new_state = paddle.tensor.math._multiply_with_axis(
        new_state, step_mask, axis=0
    ) + paddle.tensor.math._multiply_with_axis(state, (1 - step_mask), axis=0)
    return new_state


def _transpose_batch_time(x):
    perm = [1, 0] + list(range(2, len(x.shape)))
    return paddle.transpose(x, perm)


def _rnn_dynamic_graph(
    cell,
    inputs,
    initial_states=None,
    sequence_length=None,
    time_major=False,
    is_reverse=False,
    **kwargs
):
    time_step_index = 0 if time_major else 1
    flat_inputs = flatten(inputs)
    time_steps = flat_inputs[0].shape[time_step_index]

    if initial_states is None:
        initial_states = cell.get_initial_states(
            batch_ref=inputs, batch_dim_idx=1 if time_major else 0
        )

    if not time_major:
        inputs = map_structure(_transpose_batch_time, inputs)

    if sequence_length is not None:
        mask = sequence_lod.sequence_mask(
            sequence_length, maxlen=time_steps, dtype=inputs.dtype
        )
        mask = paddle.transpose(mask, [1, 0])

    if is_reverse:
        inputs = map_structure(lambda x: paddle.reverse(x, axis=[0]), inputs)
        mask = (
            paddle.reverse(mask, axis=[0])
            if sequence_length is not None
            else None
        )

    states = initial_states
    outputs = []
    for i in range(time_steps):
        step_inputs = map_structure(lambda x: x[i], inputs)
        step_outputs, new_states = cell(step_inputs, states, **kwargs)
        if sequence_length is not None:
            new_states = map_structure(
                partial(_maybe_copy, step_mask=mask[i]), states, new_states
            )
        states = new_states
        outputs = (
            map_structure(lambda x: ArrayWrapper(x), step_outputs)
            if i == 0
            else map_structure(
                lambda x, x_array: x_array.append(x), step_outputs, outputs
            )
        )

    final_outputs = map_structure(
        lambda x: paddle.stack(x.array, axis=time_step_index), outputs
    )

    if is_reverse:
        final_outputs = map_structure(
            lambda x: paddle.reverse(x, axis=time_step_index), final_outputs
        )

    final_states = new_states
    return final_outputs, final_states


def _rnn_static_graph(
    cell,
    inputs,
    initial_states=None,
    sequence_length=None,
    time_major=False,
    is_reverse=False,
    **kwargs
):
    check_type(inputs, 'inputs', (Variable, list, tuple), 'rnn')
    if isinstance(inputs, (list, tuple)):
        for i, input_x in enumerate(inputs):
            check_variable_and_dtype(
                input_x, 'inputs[' + str(i) + ']', ['float32', 'float64'], 'rnn'
            )
    check_type(
        initial_states,
        'initial_states',
        (Variable, list, tuple, type(None)),
        'rnn',
    )

    check_type(
        sequence_length, 'sequence_length', (Variable, type(None)), 'rnn'
    )

    def _switch_grad(x, stop=False):
        x.stop_gradient = stop
        return x

    if initial_states is None:
        initial_states = cell.get_initial_states(
            batch_ref=inputs, batch_dim_idx=1 if time_major else 0
        )
    initial_states = map_structure(_switch_grad, initial_states)

    if not time_major:
        inputs = map_structure(_transpose_batch_time, inputs)

H
hong 已提交
257
    max_seq_len = paddle.shape(flatten(inputs)[0])[0]
258 259 260 261 262 263 264 265 266 267 268
    if sequence_length:
        mask = sequence_lod.sequence_mask(
            sequence_length,
            maxlen=max_seq_len,
            dtype=flatten(initial_states)[0].dtype,
        )
        mask = paddle.transpose(mask, [1, 0])
    if is_reverse:
        inputs = map_structure(lambda x: paddle.reverse(x, axis=[0]), inputs)
        mask = paddle.reverse(mask, axis=[0]) if sequence_length else None

H
hong 已提交
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
    with paddle.fluid.framework.device_guard("cpu"):
        start_i = paddle.zeros([1], dtype="int64")
        end = max_seq_len

        end = paddle.cast(end, "int64")
        cond = start_i < end
    while_op = control_flow.While(cond)

    out_array = paddle.tensor.create_array(dtype=flatten(inputs)[0].dtype)

    init_array = map_structure(
        lambda x: paddle.tensor.create_array(dtype=x.dtype), initial_states
    )

    map_structure(
        lambda x, y: paddle.tensor.array_write(x, start_i, y),
        initial_states,
        init_array,
    )

    with while_op.block():

        step_in = inputs[start_i]
        # step_in = paddle.fluid.layers.Print( step_in, message="step in")
        pre_state = map_structure(
            lambda x: paddle.tensor.array_read(x, start_i), init_array
        )
        # pre_state = paddle.fluid.layers.Print( pre_state, message="pre")
        outputs, new_states = cell(step_in, pre_state, **kwargs)
        assert isinstance(outputs, paddle.fluid.framework.Variable)
        utils.assert_same_structure(new_states, pre_state)
300
        if sequence_length:
H
hong 已提交
301 302 303 304 305 306
            step_mask = paddle.unsqueeze(mask[start_i], 1)
            # paddle.fluid.layers.Print( step_mask, message="mask")
            # new_states = map_structure(
            #     partial(_maybe_copy, step_mask=step_mask),
            #     pre_state, new_states
            # )
307
            new_states = map_structure(
H
hong 已提交
308 309 310
                lambda x, y: (x * step_mask + y * (1.0 - step_mask)),
                new_states,
                pre_state,
311 312
            )

H
hong 已提交
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
        paddle.tensor.array_write(outputs, start_i, out_array)

        with paddle.fluid.framework.device_guard("cpu"):

            start_i = paddle.tensor.increment(x=start_i, value=1)
        map_structure(
            lambda x, y: paddle.tensor.array_write(x, start_i, y),
            new_states,
            init_array,
        )

        with paddle.fluid.framework.device_guard("cpu"):
            new_cond = paddle.tensor.less_than(start_i, end)
            paddle.fluid.layers.assign(new_cond, cond)

L
liu zhengxi 已提交
328
    out, _ = tensor_array_to_tensor(out_array, axis=0, use_stack=True)
329

H
hong 已提交
330
    all_state = map_structure(
L
liu zhengxi 已提交
331
        lambda x: tensor_array_to_tensor(x, axis=0, use_stack=True)[0],
H
hong 已提交
332 333 334 335
        init_array,
    )
    final_outputs = out
    final_states = map_structure(lambda x: x[-1], all_state)
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448

    if is_reverse:
        final_outputs = map_structure(
            lambda x: paddle.reverse(x, axis=[0]), final_outputs
        )

    if not time_major:
        final_outputs = map_structure(_transpose_batch_time, final_outputs)

    return (final_outputs, final_states)


def birnn(
    cell_fw,
    cell_bw,
    inputs,
    initial_states=None,
    sequence_length=None,
    time_major=False,
    **kwargs
):
    r"""
    birnn creates a bidirectional recurrent neural network specified by
    RNNCell `cell_fw` and `cell_bw`, which performs :code:`cell.call()`
    (for dygraph mode :code:`cell.forward`) repeatedly until reaches to
    the maximum length of `inputs` and then concat the outputs for both RNNs
    along the last axis.

    Parameters:
        cell_fw(RNNCellBase): An instance of `RNNCellBase`.
        cell_bw(RNNCellBase): An instance of `RNNCellBase`.
        inputs(Tensor): the input sequences.
            If time_major is True, the shape is
            `[time_steps, batch_size, input_size]`
            else the shape is `[batch_size, time_steps, input_size]`.
        initial_states(tuple, optional): A tuple of initial states of
            `cell_fw` and `cell_bw`.
            If not provided, `cell.get_initial_states` would be called to
            produce initial state for each cell. Defaults to None.
        sequence_length (Tensor, optional): shape `[batch_size]`, dtype: int64
            or int32. The valid lengths of input sequences. Defaults to None.
            If `sequence_length` is not None, the inputs are treated as
            padded sequences. In each input sequence, elements whose time step
            index are not less than the valid length are treated as paddings.
        time_major (bool): Whether the first dimension of the input means the
            time steps. Defaults to False.
        **kwargs: Additional keyword arguments to pass to `forward` of each cell.

    Returns:
        outputs (Tensor): the outputs of the bidirectional RNN. It is the
            concatenation of the outputs from the forward RNN and backward
            RNN along the last axis.
            If time major is True, the shape is `[time_steps, batch_size, size]`,
            else the shape is `[batch_size, time_steps, size]`, where size is
            `cell_fw.hidden_size + cell_bw.hidden_size`.
        final_states (tuple): A tuple of the final states of the forward
            cell and backward cell.

    Examples:

        .. code-block:: python

            import paddle
            paddle.disable_static()

            cell_fw = paddle.nn.LSTMCell(16, 32)
            cell_bw = paddle.nn.LSTMCell(16, 32)

            inputs = paddle.rand((4, 23, 16))
            hf, cf = paddle.rand((4, 32)), paddle.rand((4, 32))
            hb, cb = paddle.rand((4, 32)), paddle.rand((4, 32))
            initial_states = ((hf, cf), (hb, cb))
            outputs, final_states = paddle.nn.layer.birnn(
                cell_fw, cell_bw, inputs, initial_states)

    """

    if initial_states is None:
        states_fw = cell_fw.get_initial_states(
            batch_ref=inputs, batch_dim_idx=1 if time_major else 0
        )
        states_bw = cell_fw.get_initial_states(
            batch_ref=inputs, batch_dim_idx=1 if time_major else 0
        )
    else:
        states_fw, states_bw = initial_states
    outputs_fw, states_fw = rnn(
        cell_fw,
        inputs,
        states_fw,
        sequence_length,
        time_major=time_major,
        **kwargs
    )

    outputs_bw, states_bw = rnn(
        cell_bw,
        inputs,
        states_bw,
        sequence_length,
        time_major=time_major,
        is_reverse=True,
        **kwargs
    )

    outputs = map_structure(
        lambda x, y: paddle.concat([x, y], -1), outputs_fw, outputs_bw
    )

    final_states = (states_fw, states_bw)
    return outputs, final_states


F
Feiyu Chan 已提交
449 450 451 452 453
def split_states(states, bidirectional=False, state_components=1):
    r"""
    Split states of RNN network into possibly nested list or tuple of
    states of each RNN cells of the RNN network.

454
    Parameters:
F
Feiyu Chan 已提交
455 456
        states (Tensor|tuple|list): the concatenated states for RNN network.
            When `state_components` is 1, states in a Tensor with shape
457 458 459 460 461 462 463 464 465 466 467
            `(L*D, N, C)` where `L` is the number of layers of the RNN
            network, `D` is the number of directions of the RNN network(1
            for unidirectional RNNs and 2 for bidirectional RNNs), `N` is
            the batch size of the input to the RNN network, `C` is the
            hidden size of the RNN network.

            When `state_components` is larger than 1, `states` is a tuple of
            `state_components` Tensors that meet the requirements described
            above.

            For SimpleRNNs and GRUs, `state_components` is 1, and for LSTMs,
F
Feiyu Chan 已提交
468
            `state_components` is 2.
469
        bidirectional (bool): whether the state is of a bidirectional RNN
F
Feiyu Chan 已提交
470 471 472
            network. Defaults to False.
        state_components (int): the number of the components of the states. see
            `states` above. Defaults to 1.
473

F
Feiyu Chan 已提交
474
    Returns:
475 476 477
        A nested list or tuple of RNN cell states.
        If `bidirectional` is True, it can be indexed twice to get an RNN
        cell state. The first index indicates the layer, the second index
F
Feiyu Chan 已提交
478 479 480 481
        indicates the direction.
        If `bidirectional` is False, it can be indexed once to get an RNN
        cell state. The index indicates the layer.
        Note that if `state_components` is larger than 1, an RNN cell state
482
        can be indexed one more time to get a tensor of shape(N, C), where
F
Feiyu Chan 已提交
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
        `N` is the batch size of the input to the RNN cell, and `C` is the
        hidden size of the RNN cell.
    """
    if state_components == 1:
        states = paddle.unstack(states)
        if not bidirectional:
            return states
        else:
            return list(zip(states[::2], states[1::2]))
    else:
        assert len(states) == state_components
        states = tuple([paddle.unstack(item) for item in states])
        if not bidirectional:
            return list(zip(*states))
        else:
            states = list(zip(*states))
            return list(zip(states[::2], states[1::2]))


def concat_states(states, bidirectional=False, state_components=1):
    r"""
504
    Concatenate a possibly nested list or tuple of RNN cell states into a
F
Feiyu Chan 已提交
505 506
    compact form.

507
    Parameters:
508 509 510 511
        states (list|tuple): a possibly nested list or tuple of RNN cell
            states.
            If `bidirectional` is True, it can be indexed twice to get an
            RNN cell state. The first index indicates the layer, the second
F
Feiyu Chan 已提交
512 513 514
            index indicates the direction.
            If `bidirectional` is False, it can be indexed once to get an RNN
            cell state. The index indicates the layer.
515 516 517 518 519
            Note that if `state_components` is larger than 1, an RNN cell
            state can be indexed one more time to get a tensor of shape(N, C),
            where `N` is the batch size of the input to the RNN cell, and
            `C` is the hidden size of the RNN cell.
        bidirectional (bool): whether the state is of a bidirectional RNN
F
Feiyu Chan 已提交
520 521 522
            network. Defaults to False.
        state_components (int): the number of the components of the states. see
            `states` above. Defaults to 1.
523

F
Feiyu Chan 已提交
524 525 526
    Returns:
        Concatenated states for RNN network.
        When `state_components` is 1, states in a Tensor with shape
527 528 529 530
        `(L\*D, N, C)` where `L` is the number of layers of the RNN
        network, `D` is the number of directions of the RNN network(1 for
        unidirectional RNNs and 2 for bidirectional RNNs), `N` is the batch
        size of the input to the RNN network, `C` is the hidden size of the
F
Feiyu Chan 已提交
531
        RNN network.
532

F
Feiyu Chan 已提交
533 534 535 536 537 538 539 540
    """
    if state_components == 1:
        return paddle.stack(flatten(states))
    else:
        states = flatten(states)
        componnets = []
        for i in range(state_components):
            componnets.append(states[i::state_components])
541
        return tuple([paddle.stack(item) for item in componnets])
F
Feiyu Chan 已提交
542 543 544 545 546 547 548 549 550


class RNNCellBase(Layer):
    r"""
    RNNCellBase is the base class for abstraction representing the calculations
    mapping the input and state to the output and new state. It is suitable to
    and mostly used in RNN.
    """

551 552 553
    def get_initial_states(
        self, batch_ref, shape=None, dtype=None, init_value=0.0, batch_dim_idx=0
    ):
F
Feiyu Chan 已提交
554 555 556
        r"""
        Generate initialized states according to provided shape, data type and
        value.
557 558

        Parameters:
559 560 561
            batch_ref (Tensor): A tensor, which shape would be used to
                determine the batch size, which is used to generate initial
                states. For `batch_ref`'s shape d, `d[batch_dim_idx]` is
F
Feiyu Chan 已提交
562
                treated as batch size.
563 564 565 566
            shape (list|tuple, optional): A (possibly nested structure of) shape[s],
                where a shape is a list/tuple of integer. `-1` (for batch size)
                will be automatically prepended if a shape does not starts with
                it. If None, property `state_shape` will be used. Defaults to
F
Feiyu Chan 已提交
567
                None.
568 569 570 571 572
            dtype (str|list|tuple, optional): A (possibly nested structure of)
                data type[s]. The structure must be same as that of `shape`,
                except when all tensors' in states has the same data type, a
                single data type can be used. If None and property `cell.state_shape`
                is not available, current default floating type of paddle is
F
Feiyu Chan 已提交
573
                used. Defaults to None.
574
            init_value (float, optional): A float value used to initialize states.
F
Feiyu Chan 已提交
575
                Defaults to 0.
576
            batch_dim_idx (int, optional): An integer indicating which
F
Feiyu Chan 已提交
577
                dimension of the of `batch_ref` represents batch. Defaults to 0.
578

F
Feiyu Chan 已提交
579
        Returns:
580
            init_states (Tensor|tuple|list): tensor of the provided shape and
F
Feiyu Chan 已提交
581 582 583 584 585 586 587 588
                dtype, or list of tensors that each satisfies the requirements,
                packed in the same structure as `shape` and `type` does.
        """
        # TODO: use inputs and batch_size
        batch_ref = flatten(batch_ref)[0]

        def _is_shape_sequence(seq):
            """For shape, list/tuple of integer is the finest-grained objection"""
589 590 591 592
            if isinstance(seq, list) or isinstance(seq, tuple):
                if reduce(
                    lambda flag, x: isinstance(x, int) and flag, seq, True
                ):
F
Feiyu Chan 已提交
593 594 595 596
                    return False
            # TODO: Add check for the illegal
            if isinstance(seq, dict):
                return True
597
            return isinstance(seq, Sequence) and not isinstance(seq, str)
F
Feiyu Chan 已提交
598

599
        class Shape:
F
Feiyu Chan 已提交
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
            def __init__(self, shape):
                self.shape = shape if shape[0] == -1 else ([-1] + list(shape))

        # nested structure of shapes
        states_shapes = self.state_shape if shape is None else shape
        is_sequence_ori = utils.is_sequence
        utils.is_sequence = _is_shape_sequence
        states_shapes = map_structure(lambda shape: Shape(shape), states_shapes)
        utils.is_sequence = is_sequence_ori

        # nested structure of dtypes
        try:
            states_dtypes = self.state_dtype if dtype is None else dtype
        except NotImplementedError:
            states_dtypes = framework.get_default_dtype()
        if len(flatten(states_dtypes)) == 1:
            dtype = flatten(states_dtypes)[0]
            states_dtypes = map_structure(lambda shape: dtype, states_shapes)

        init_states = map_structure(
620 621 622 623 624 625 626 627 628 629
            lambda shape, dtype: paddle.fluid.layers.fill_constant_batch_size_like(
                input=batch_ref,
                shape=shape.shape,
                dtype=dtype,
                value=init_value,
                input_dim_idx=batch_dim_idx,
            ),
            states_shapes,
            states_dtypes,
        )
F
Feiyu Chan 已提交
630 631 632 633 634 635 636
        return init_states

    @property
    def state_shape(self):
        r"""
        Abstract method (property).
        Used to initialize states.
637
        A (possiblely nested structure of) shape[s], where a shape is a
F
Feiyu Chan 已提交
638 639 640 641 642 643 644
        list/tuple of integers (-1 for batch size would be automatically
        inserted into a shape if shape is not started with it).
        Not necessary to be implemented if states are not initialized by
        `get_initial_states` or the `shape` argument is provided when using
        `get_initial_states`.
        """
        raise NotImplementedError(
645 646
            "Please add implementaion for `state_shape` in the used cell."
        )
F
Feiyu Chan 已提交
647 648 649 650 651 652 653 654 655 656 657 658 659 660

    @property
    def state_dtype(self):
        r"""
        Abstract method (property).
        Used to initialize states.
        A (possiblely nested structure of) data types[s]. The structure must be
        same as that of `shape`, except when all tensors' in states has the same
        data type, a signle data type can be used.
        Not necessary to be implemented if states are not initialized
        by `get_initial_states` or the `dtype` argument is provided when using
        `get_initial_states`.
        """
        raise NotImplementedError(
661 662
            "Please add implementaion for `state_dtype` in the used cell."
        )
F
Feiyu Chan 已提交
663 664 665 666


class SimpleRNNCell(RNNCellBase):
    r"""
667
    Elman RNN (SimpleRNN) cell. Given the inputs and previous states, it
F
Feiyu Chan 已提交
668 669 670 671 672
    computes the outputs and updates states.

    The formula used is as follows:

    .. math::
673
        h_{t} & = act(W_{ih}x_{t} + b_{ih} + W_{hh}h_{t-1} + b_{hh})
674

F
Feiyu Chan 已提交
675
        y_{t} & = h_{t}
676

677
    where :math:`act` is for :attr:`activation`.
F
Feiyu Chan 已提交
678

679
    Please refer to `Finding Structure in Time
F
Feiyu Chan 已提交
680
    <https://crl.ucsd.edu/~elman/Papers/fsit.pdf>`_ for more details.
681

682
    Parameters:
F
Feiyu Chan 已提交
683 684
        input_size (int): The input size.
        hidden_size (int): The hidden size.
685
        activation (str, optional): The activation in the SimpleRNN cell.
F
Feiyu Chan 已提交
686
            It can be `tanh` or `relu`. Defaults to `tanh`.
687
        weight_ih_attr (ParamAttr, optional): The parameter attribute for
688
            :math:`weight_ih`. Default: None.
689
        weight_hh_attr(ParamAttr, optional): The parameter attribute for
690
            :math:`weight_hh`. Default: None.
691
        bias_ih_attr (ParamAttr, optional): The parameter attribute for the
692
            :math:`bias_ih`. Default: None.
693
        bias_hh_attr (ParamAttr, optional): The parameter attribute for the
694
            :math:`bias_hh`. Default: None.
695
        name (str, optional): Name for the operation (optional, default is
F
Feiyu Chan 已提交
696 697
            None). For more information, please refer to :ref:`api_guide_Name`.

698 699 700 701 702
    Variables:
        - **weight_ih** (Parameter): shape (hidden_size, input_size), input to hidden weight, corresponding to :math:`W_{ih}` in the formula.
        - **weight_hh** (Parameter): shape (hidden_size, hidden_size), hidden to hidden weight, corresponding to :math:`W_{hh}` in the formula.
        - **bias_ih** (Parameter): shape (hidden_size, ), input to hidden bias, corresponding to :math:`b_{ih}` in the formula.
        - **bias_hh** (Parameter): shape (hidden_size, ), hidden to hidden bias, corresponding to :math:`b_{hh}` in the formula.
703

F
Feiyu Chan 已提交
704
    Inputs:
705 706
        - **inputs** (Tensor): shape `[batch_size, input_size]`, the input, corresponding to :math:`x_{t}` in the formula.
        - **states** (Tensor, optional): shape `[batch_size, hidden_size]`, the previous hidden state, corresponding to :math:`h_{t-1}` in the formula. When states is None, zero state is used. Defaults to None.
F
Feiyu Chan 已提交
707 708

    Returns:
709 710
        - **outputs** (Tensor): shape `[batch_size, hidden_size]`, the output, corresponding to :math:`h_{t}` in the formula.
        - **states** (Tensor): shape `[batch_size, hidden_size]`, the new hidden state, corresponding to :math:`h_{t}` in the formula.
711

F
Feiyu Chan 已提交
712
    Notes:
713
        All the weights and bias are initialized with `Uniform(-std, std)` by default. Where std = :math:`\frac{1}{\sqrt{hidden\_size}}`. For more information about parameter initialization, please refer to :ref:`api_fluid_ParamAttr`.
F
Feiyu Chan 已提交
714 715 716 717 718 719 720 721 722 723 724 725

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.randn((4, 16))
            prev_h = paddle.randn((4, 32))

            cell = paddle.nn.SimpleRNNCell(16, 32)
            y, h = cell(x, prev_h)
726 727 728
            print(y.shape)

            #[4,32]
F
Feiyu Chan 已提交
729 730 731

    """

732 733 734 735 736 737 738 739 740 741 742
    def __init__(
        self,
        input_size,
        hidden_size,
        activation="tanh",
        weight_ih_attr=None,
        weight_hh_attr=None,
        bias_ih_attr=None,
        bias_hh_attr=None,
        name=None,
    ):
743
        super().__init__()
744 745
        if hidden_size <= 0:
            raise ValueError(
746 747 748 749
                "hidden_size of {} must be greater than 0, but now equals to {}".format(
                    self.__class__.__name__, hidden_size
                )
            )
F
Feiyu Chan 已提交
750 751 752 753
        std = 1.0 / math.sqrt(hidden_size)
        self.weight_ih = self.create_parameter(
            (hidden_size, input_size),
            weight_ih_attr,
754 755
            default_initializer=I.Uniform(-std, std),
        )
F
Feiyu Chan 已提交
756 757 758
        self.weight_hh = self.create_parameter(
            (hidden_size, hidden_size),
            weight_hh_attr,
759 760
            default_initializer=I.Uniform(-std, std),
        )
F
Feiyu Chan 已提交
761
        self.bias_ih = self.create_parameter(
762
            (hidden_size,),
F
Feiyu Chan 已提交
763 764
            bias_ih_attr,
            is_bias=True,
765 766
            default_initializer=I.Uniform(-std, std),
        )
F
Feiyu Chan 已提交
767
        self.bias_hh = self.create_parameter(
768
            (hidden_size,),
F
Feiyu Chan 已提交
769 770
            bias_hh_attr,
            is_bias=True,
771 772
            default_initializer=I.Uniform(-std, std),
        )
F
Feiyu Chan 已提交
773 774 775 776 777 778

        self.input_size = input_size
        self.hidden_size = hidden_size
        if activation not in ["tanh", "relu"]:
            raise ValueError(
                "activation for SimpleRNNCell should be tanh or relu, "
779 780
                "but get {}".format(activation)
            )
F
Feiyu Chan 已提交
781
        self.activation = activation
782
        self._activation_fn = paddle.tanh if activation == "tanh" else F.relu
F
Feiyu Chan 已提交
783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798

    def forward(self, inputs, states=None):
        if states is None:
            states = self.get_initial_states(inputs, self.state_shape)
        pre_h = states
        i2h = paddle.matmul(inputs, self.weight_ih, transpose_y=True)
        if self.bias_ih is not None:
            i2h += self.bias_ih
        h2h = paddle.matmul(pre_h, self.weight_hh, transpose_y=True)
        if self.bias_hh is not None:
            h2h += self.bias_hh
        h = self._activation_fn(i2h + h2h)
        return h, h

    @property
    def state_shape(self):
799
        return (self.hidden_size,)
F
Feiyu Chan 已提交
800

801 802
    def extra_repr(self):
        s = '{input_size}, {hidden_size}'
803
        if self.activation != "tanh":
804 805 806
            s += ', activation={activation}'
        return s.format(**self.__dict__)

F
Feiyu Chan 已提交
807 808 809

class LSTMCell(RNNCellBase):
    r"""
810
    Long-Short Term Memory(LSTM) RNN cell. Given the inputs and previous states,
F
Feiyu Chan 已提交
811 812 813 814 815 816
    it computes the outputs and updates states.

    The formula used is as follows:

    .. math::
        i_{t} & = \sigma(W_{ii}x_{t} + b_{ii} + W_{hi}h_{t-1} + b_{hi})
817

F
Feiyu Chan 已提交
818
        f_{t} & = \sigma(W_{if}x_{t} + b_{if} + W_{hf}h_{t-1} + b_{hf})
819

F
Feiyu Chan 已提交
820
        o_{t} & = \sigma(W_{io}x_{t} + b_{io} + W_{ho}h_{t-1} + b_{ho})
821 822 823 824 825 826 827

        \widetilde{c}_{t} & = \tanh (W_{ig}x_{t} + b_{ig} + W_{hg}h_{t-1} + b_{hg})

        c_{t} & = f_{t} * c_{t-1} + i_{t} * \widetilde{c}_{t}

        h_{t} & = o_{t} * \tanh(c_{t})

F
Feiyu Chan 已提交
828 829
        y_{t} & = h_{t}

830
    where :math:`\sigma` is the sigmoid fucntion, and * is the elemetwise
F
Feiyu Chan 已提交
831 832 833 834 835
    multiplication operator.

    Please refer to `An Empirical Exploration of Recurrent Network Architectures
    <http://proceedings.mlr.press/v37/jozefowicz15.pdf>`_ for more details.

836
    Parameters:
F
Feiyu Chan 已提交
837 838
        input_size (int): The input size.
        hidden_size (int): The hidden size.
839
        weight_ih_attr(ParamAttr, optional): The parameter attribute for
F
Feiyu Chan 已提交
840
            `weight_ih`. Default: None.
841
        weight_hh_attr(ParamAttr, optional): The parameter attribute for
F
Feiyu Chan 已提交
842
            `weight_hh`. Default: None.
843
        bias_ih_attr (ParamAttr, optional): The parameter attribute for the
F
Feiyu Chan 已提交
844
            `bias_ih`. Default: None.
845
        bias_hh_attr (ParamAttr, optional): The parameter attribute for the
F
Feiyu Chan 已提交
846
            `bias_hh`. Default: None.
847
        name (str, optional): Name for the operation (optional, default is
F
Feiyu Chan 已提交
848 849
            None). For more information, please refer to :ref:`api_guide_Name`.

850 851 852 853 854
    Variables:
        - **weight_ih** (Parameter): shape (4 * hidden_size, input_size), input to hidden weight, which corresponds to the concatenation of :math:`W_{ii}, W_{if}, W_{ig}, W_{io}` in the formula.
        - **weight_hh** (Parameter): shape (4 * hidden_size, hidden_size), hidden to hidden weight, which corresponds to the concatenation of :math:`W_{hi}, W_{hf}, W_{hg}, W_{ho}` in the formula.
        - **bias_ih** (Parameter): shape (4 * hidden_size, ), input to hidden bias, which corresponds to the concatenation of :math:`b_{ii}, b_{if}, b_{ig}, b_{io}` in the formula.
        - **bias_hh** (Parameter): shape (4 * hidden_size, ), hidden to hidden bias, swhich corresponds to the concatenation of :math:`b_{hi}, b_{hf}, b_{hg}, b_{ho}` in the formula.
F
Feiyu Chan 已提交
855 856

    Inputs:
857
        - **inputs** (Tensor): shape `[batch_size, input_size]`, the input, corresponding to :math:`x_t` in the formula.
858
        - **states** (list|tuple, optional): a list/tuple of two tensors, each of shape `[batch_size, hidden_size]`, the previous hidden state, corresponding to :math:`h_{t-1}, c_{t-1}` in the formula. When states is None, zero state is used. Defaults to None.
F
Feiyu Chan 已提交
859 860

    Returns:
861 862
        - **outputs** (Tensor): shape `[batch_size, hidden_size]`, the output, corresponding to :math:`h_{t}` in the formula.
        - **states** (tuple): a tuple of two tensors, each of shape `[batch_size, hidden_size]`, the new hidden states, corresponding to :math:`h_{t}, c_{t}` in the formula.
F
Feiyu Chan 已提交
863 864

    Notes:
865 866
        All the weights and bias are initialized with `Uniform(-std, std)` by
        default. Where std = :math:`\frac{1}{\sqrt{hidden\_size}}`. For more
867
        information about parameter initialization, please refer to :ref:`api_fluid_ParamAttr`.
F
Feiyu Chan 已提交
868 869 870 871 872 873 874 875 876 877 878 879 880 881

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.randn((4, 16))
            prev_h = paddle.randn((4, 32))
            prev_c = paddle.randn((4, 32))

            cell = paddle.nn.LSTMCell(16, 32)
            y, (h, c) = cell(x, (prev_h, prev_c))

882 883 884 885 886 887 888 889
            print(y.shape)
            print(h.shape)
            print(c.shape)

            #[4,32]
            #[4,32]
            #[4,32]

F
Feiyu Chan 已提交
890 891
    """

892 893 894 895 896 897 898 899 900 901
    def __init__(
        self,
        input_size,
        hidden_size,
        weight_ih_attr=None,
        weight_hh_attr=None,
        bias_ih_attr=None,
        bias_hh_attr=None,
        name=None,
    ):
902
        super().__init__()
903 904
        if hidden_size <= 0:
            raise ValueError(
905 906 907 908
                "hidden_size of {} must be greater than 0, but now equals to {}".format(
                    self.__class__.__name__, hidden_size
                )
            )
F
Feiyu Chan 已提交
909 910 911 912
        std = 1.0 / math.sqrt(hidden_size)
        self.weight_ih = self.create_parameter(
            (4 * hidden_size, input_size),
            weight_ih_attr,
913 914
            default_initializer=I.Uniform(-std, std),
        )
F
Feiyu Chan 已提交
915 916 917
        self.weight_hh = self.create_parameter(
            (4 * hidden_size, hidden_size),
            weight_hh_attr,
918 919
            default_initializer=I.Uniform(-std, std),
        )
F
Feiyu Chan 已提交
920
        self.bias_ih = self.create_parameter(
921
            (4 * hidden_size,),
F
Feiyu Chan 已提交
922 923
            bias_ih_attr,
            is_bias=True,
924 925
            default_initializer=I.Uniform(-std, std),
        )
F
Feiyu Chan 已提交
926
        self.bias_hh = self.create_parameter(
927
            (4 * hidden_size,),
F
Feiyu Chan 已提交
928 929
            bias_hh_attr,
            is_bias=True,
930 931
            default_initializer=I.Uniform(-std, std),
        )
F
Feiyu Chan 已提交
932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961

        self.hidden_size = hidden_size
        self.input_size = input_size
        self._gate_activation = F.sigmoid
        self._activation = paddle.tanh

    def forward(self, inputs, states=None):
        if states is None:
            states = self.get_initial_states(inputs, self.state_shape)
        pre_hidden, pre_cell = states
        gates = paddle.matmul(inputs, self.weight_ih, transpose_y=True)
        if self.bias_ih is not None:
            gates = gates + self.bias_ih
        gates += paddle.matmul(pre_hidden, self.weight_hh, transpose_y=True)
        if self.bias_hh is not None:
            gates = gates + self.bias_hh

        chunked_gates = paddle.split(gates, num_or_sections=4, axis=-1)

        i = self._gate_activation(chunked_gates[0])
        f = self._gate_activation(chunked_gates[1])
        o = self._gate_activation(chunked_gates[3])
        c = f * pre_cell + i * self._activation(chunked_gates[2])
        h = o * self._activation(c)

        return h, (h, c)

    @property
    def state_shape(self):
        r"""
962 963 964
        The `state_shape` of LSTMCell is a tuple with two shapes:
        `((hidden_size, ), (hidden_size,))`. (-1 for batch size would be
        automatically inserted into shape). These two shapes correspond
F
Feiyu Chan 已提交
965 966
        to :math:`h_{t-1}` and :math:`c_{t-1}` separately.
        """
967
        return ((self.hidden_size,), (self.hidden_size,))
F
Feiyu Chan 已提交
968

969 970 971
    def extra_repr(self):
        return '{input_size}, {hidden_size}'.format(**self.__dict__)

F
Feiyu Chan 已提交
972 973 974

class GRUCell(RNNCellBase):
    r"""
975
    Gated Recurrent Unit (GRU) RNN cell. Given the inputs and previous states,
F
Feiyu Chan 已提交
976 977 978 979
    it computes the outputs and updates states.

    The formula for GRU used is as follows:

980
    ..  math::
F
Feiyu Chan 已提交
981

982
        r_{t} & = \sigma(W_{ir}x_{t} + b_{ir} + W_{hr}h_{t-1} + b_{hr})
983

984
        z_{t} & = \sigma(W_{iz}x_{t} + b_{iz} + W_{hz}h_{t-1} + b_{hz})
985

986
        \widetilde{h}_{t} & = \tanh(W_{ic}x_{t} + b_{ic} + r_{t} * (W_{hc}h_{t-1} + b_{hc}))
987 988 989

        h_{t} & = z_{t} * h_{t-1} + (1 - z_{t}) * \widetilde{h}_{t}

F
Feiyu Chan 已提交
990
        y_{t} & = h_{t}
991 992

    where :math:`\sigma` is the sigmoid fucntion, and * is the elemetwise
F
Feiyu Chan 已提交
993 994 995 996 997 998
    multiplication operator.

    Please refer to `An Empirical Exploration of Recurrent Network Architectures
    <http://proceedings.mlr.press/v37/jozefowicz15.pdf>`_ for more details.

    Parameters:
999
        input_size (int): The input size.
F
Feiyu Chan 已提交
1000
        hidden_size (int): The hidden size.
1001
        weight_ih_attr(ParamAttr, optional): The parameter attribute for
F
Feiyu Chan 已提交
1002
            `weight_ih`. Default: None.
1003
        weight_hh_attr(ParamAttr, optional): The parameter attribute for
F
Feiyu Chan 已提交
1004
            `weight_hh`. Default: None.
1005
        bias_ih_attr (ParamAttr, optional): The parameter attribute for the
F
Feiyu Chan 已提交
1006
            `bias_ih`. Default: None.
1007
        bias_hh_attr (ParamAttr, optional): The parameter attribute for the
F
Feiyu Chan 已提交
1008
            `bias_hh`. Default: None.
1009
        name (str, optional): Name for the operation (optional, default is
F
Feiyu Chan 已提交
1010 1011
            None). For more information, please refer to :ref:`api_guide_Name`.

1012 1013 1014 1015 1016
    Variables:
        - **weight_ih** (Parameter): shape (3 * hidden_size, input_size), input to hidden weight, which corresponds to the concatenation of :math:`W_{ir}, W_{iz}, W_{ic}` in the formula.
        - **weight_hh** (Parameter): shape (3 * hidden_size, hidden_size), hidden to hidden weight, which corresponds to the concatenation of :math:`W_{hr}, W_{hz}, W_{hc}` in the formula.
        - **bias_ih** (Parameter): shape (3 * hidden_size, ), input to hidden bias, which corresponds to the concatenation of :math:`b_{ir}, b_{iz}, b_{ic}` in the formula.
        - **bias_hh** (Parameter): shape (3 * hidden_size, ), hidden to hidden bias, swhich corresponds to the concatenation of :math:`b_{hr}, b_{hz}, b_{hc}` in the formula.
F
Feiyu Chan 已提交
1017 1018

    Inputs:
1019 1020
        - **inputs** (Tensor): A tensor with shape `[batch_size, input_size]`, corresponding to :math:`x_t` in the formula.
        - **states** (Tensor): A tensor with shape `[batch_size, hidden_size]`, corresponding to :math:`h_{t-1}` in the formula.
F
Feiyu Chan 已提交
1021 1022

    Returns:
1023 1024
        - **outputs** (Tensor): shape `[batch_size, hidden_size]`, the output, corresponding to :math:`h_{t}` in the formula.
        - **states** (Tensor): shape `[batch_size, hidden_size]`, the new hidden state, corresponding to :math:`h_{t}` in the formula.
1025

F
Feiyu Chan 已提交
1026
    Notes:
1027 1028
        All the weights and bias are initialized with `Uniform(-std, std)` by
        default. Where std = :math:`\frac{1}{\sqrt{hidden\_size}}`. For more
1029
        information about parameter initialization, please refer to s:ref:`api_fluid_ParamAttr`.
F
Feiyu Chan 已提交
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.randn((4, 16))
            prev_h = paddle.randn((4, 32))

            cell = paddle.nn.GRUCell(16, 32)
            y, h = cell(x, prev_h)

1043 1044 1045 1046 1047 1048
            print(y.shape)
            print(h.shape)

            #[4,32]
            #[4,32]

F
Feiyu Chan 已提交
1049 1050
    """

1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
    def __init__(
        self,
        input_size,
        hidden_size,
        weight_ih_attr=None,
        weight_hh_attr=None,
        bias_ih_attr=None,
        bias_hh_attr=None,
        name=None,
    ):
1061
        super().__init__()
1062 1063
        if hidden_size <= 0:
            raise ValueError(
1064 1065 1066 1067
                "hidden_size of {} must be greater than 0, but now equals to {}".format(
                    self.__class__.__name__, hidden_size
                )
            )
F
Feiyu Chan 已提交
1068 1069 1070 1071
        std = 1.0 / math.sqrt(hidden_size)
        self.weight_ih = self.create_parameter(
            (3 * hidden_size, input_size),
            weight_ih_attr,
1072 1073
            default_initializer=I.Uniform(-std, std),
        )
F
Feiyu Chan 已提交
1074 1075 1076
        self.weight_hh = self.create_parameter(
            (3 * hidden_size, hidden_size),
            weight_hh_attr,
1077 1078
            default_initializer=I.Uniform(-std, std),
        )
F
Feiyu Chan 已提交
1079
        self.bias_ih = self.create_parameter(
1080
            (3 * hidden_size,),
F
Feiyu Chan 已提交
1081 1082
            bias_ih_attr,
            is_bias=True,
1083 1084
            default_initializer=I.Uniform(-std, std),
        )
F
Feiyu Chan 已提交
1085
        self.bias_hh = self.create_parameter(
1086
            (3 * hidden_size,),
F
Feiyu Chan 已提交
1087 1088
            bias_hh_attr,
            is_bias=True,
1089 1090
            default_initializer=I.Uniform(-std, std),
        )
F
Feiyu Chan 已提交
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125

        self.hidden_size = hidden_size
        self.input_size = input_size
        self._gate_activation = F.sigmoid
        self._activation = paddle.tanh

    def forward(self, inputs, states=None):
        if states is None:
            states = self.get_initial_states(inputs, self.state_shape)

        pre_hidden = states
        x_gates = paddle.matmul(inputs, self.weight_ih, transpose_y=True)
        if self.bias_ih is not None:
            x_gates = x_gates + self.bias_ih
        h_gates = paddle.matmul(pre_hidden, self.weight_hh, transpose_y=True)
        if self.bias_hh is not None:
            h_gates = h_gates + self.bias_hh

        x_r, x_z, x_c = paddle.split(x_gates, num_or_sections=3, axis=1)
        h_r, h_z, h_c = paddle.split(h_gates, num_or_sections=3, axis=1)

        r = self._gate_activation(x_r + h_r)
        z = self._gate_activation(x_z + h_z)
        c = self._activation(x_c + r * h_c)  # apply reset gate after mm
        h = (pre_hidden - c) * z + c

        return h, h

    @property
    def state_shape(self):
        r"""
        The `state_shape` of GRUCell is a shape `[hidden_size]` (-1 for batch
        size would be automatically inserted into shape). The shape corresponds
        to the shape of :math:`h_{t-1}`.
        """
1126
        return (self.hidden_size,)
F
Feiyu Chan 已提交
1127

1128 1129 1130
    def extra_repr(self):
        return '{input_size}, {hidden_size}'.format(**self.__dict__)

F
Feiyu Chan 已提交
1131 1132 1133

class RNN(Layer):
    r"""
1134 1135
    Wrapper for RNN, which creates a recurrent neural network with an RNN cell.
    It performs :code:`cell.forward()` repeatedly until reaches to the maximum
F
Feiyu Chan 已提交
1136 1137
    length of `inputs`.

1138
    Parameters:
F
Feiyu Chan 已提交
1139 1140 1141 1142 1143 1144 1145
        cell(RNNCellBase): An instance of `RNNCellBase`.
        is_reverse (bool, optional): Indicate whether to calculate in the reverse
            order of input sequences. Defaults to False.
        time_major (bool): Whether the first dimension of the input means the
            time steps. Defaults to False.

    Inputs:
1146 1147 1148
        - **inputs** (Tensor): A (possibly nested structure of) tensor[s]. The input sequences. If time major is False, the shape is `[batch_size, time_steps, input_size]`. If time major is True, the shape is `[time_steps, batch_size, input_size]` where `input_size` is the input size of the cell.
        - **initial_states** (Tensor|list|tuple, optional): Tensor of a possibly nested structure of tensors, representing the initial state for the rnn cell. If not provided, `cell.get_initial_states` would be called to produce the initial states. Defaults to None.
        - **sequence_length** (Tensor, optional): shape `[batch_size]`, dtype: int64 or int32. The valid lengths of input sequences. Defaults to None.If `sequence_length` is not None, the inputs are treated as padded sequences. In each input sequence, elements whose time step index are not less than the valid length are treated as paddings.
1149
        - **kwargs**: Additional keyword arguments to pass to `forward` of the cell.
F
Feiyu Chan 已提交
1150 1151

    Returns:
1152 1153
        - **outputs** (Tensor|list|tuple): the output sequences. If `time_major` is True, the shape is `[time_steps, batch_size, hidden_size]`, else `[batch_size, time_steps, hidden_size]`.
        - **final_states** (Tensor|list|tuple): final states of the cell. Tensor or a possibly nested structure of tensors which has the same structure with intial state. Each tensor in final states has the same shape and dtype as the corresponding tensor in initial states.
1154

F
Feiyu Chan 已提交
1155 1156
    Notes:
        This class is a low level API for wrapping rnn cell into a RNN network.
1157 1158
        Users should take care of the state of the cell. If `initial_states` is
        passed to the `forward` method, make sure that it satisfies the
F
Feiyu Chan 已提交
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
        requirements of the cell.

    Examples:

        .. code-block:: python

            import paddle

            inputs = paddle.rand((4, 23, 16))
            prev_h = paddle.randn((4, 32))

            cell = paddle.nn.SimpleRNNCell(16, 32)
            rnn = paddle.nn.RNN(cell)
            outputs, final_states = rnn(inputs, prev_h)

1174 1175 1176 1177 1178 1179
            print(outputs.shape)
            print(final_states.shape)

            #[4,23,32]
            #[4,32]

F
Feiyu Chan 已提交
1180 1181 1182
    """

    def __init__(self, cell, is_reverse=False, time_major=False):
1183
        super().__init__()
F
Feiyu Chan 已提交
1184 1185 1186 1187 1188 1189 1190
        self.cell = cell
        if not hasattr(self.cell, "call"):
            # for non-dygraph mode, `rnn` api uses cell.call
            self.cell.call = self.cell.forward
        self.is_reverse = is_reverse
        self.time_major = time_major

1191 1192 1193
    def forward(
        self, inputs, initial_states=None, sequence_length=None, **kwargs
    ):
1194
        final_outputs, final_states = rnn(
1195 1196 1197 1198 1199 1200
            self.cell,
            inputs,
            initial_states=initial_states,
            sequence_length=sequence_length,
            time_major=self.time_major,
            is_reverse=self.is_reverse,
1201 1202
            **kwargs
        )
F
Feiyu Chan 已提交
1203 1204 1205 1206 1207
        return final_outputs, final_states


class BiRNN(Layer):
    r"""
1208 1209 1210
    Wrapper for bidirectional RNN, which builds a bidiretional RNN given the
    forward rnn cell and backward rnn cell. A BiRNN applies forward RNN and
    backward RNN with coresponding cells separately and concats the outputs
F
Feiyu Chan 已提交
1211 1212
    along the last axis.

1213
    Parameters:
F
Feiyu Chan 已提交
1214 1215 1216 1217 1218 1219
        cell_fw (RNNCellBase): A RNNCellBase instance used for forward RNN.
        cell_bw (RNNCellBase): A RNNCellBase instance used for backward RNN.
        time_major (bool): Whether the first dimension of the input means the
            time steps. Defaults to False.

    Inputs:
1220 1221 1222 1223
        - **inputs** (Tensor): the input sequences of both RNN. If time_major is True, the shape of is `[time_steps, batch_size, input_size]`, else the shape is `[batch_size, time_steps, input_size]`, where input_size is the input size of both cells.
        - **initial_states** (list|tuple, optional): A tuple/list of the initial states of the forward cell and backward cell. Defaults to None. If not provided, `cell.get_initial_states` would be called to produce the initial states for each cell. Defaults to None.
        - **sequence_length** (Tensor, optional): shape `[batch_size]`, dtype: int64 or int32. The valid lengths of input sequences. Defaults to None. If `sequence_length` is not None, the inputs are treated as padded sequences. In each input sequence, elements whose time step index are not less than the valid length are treated as paddings.
        - **kwargs**: Additional keyword arguments. Arguments passed to `forward` for each cell.
F
Feiyu Chan 已提交
1224 1225

    Outputs:
1226
        - **outputs** (Tensor): the outputs of the bidirectional RNN. It is the concatenation of the outputs from the forward RNN and backward RNN along the last axis. If time major is True, the shape is `[time_steps, batch_size, size]`, else the shape is `[batch_size, time_steps, size]`, where size is `cell_fw.hidden_size + cell_bw.hidden_size`.
1227
        - **final_states** (tuple): A tuple of the final states of the forward cell and backward cell.
F
Feiyu Chan 已提交
1228 1229

    Notes:
1230 1231 1232
        This class is a low level API for wrapping rnn cells into a BiRNN
        network. Users should take care of the states of the cells.
        If `initial_states` is passed to the `forward` method, make sure that
F
Feiyu Chan 已提交
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
        it satisfies the requirements of the cells.

    Examples:

        .. code-block:: python

            import paddle

            cell_fw = paddle.nn.LSTMCell(16, 32)
            cell_bw = paddle.nn.LSTMCell(16, 32)
            rnn = paddle.nn.BiRNN(cell_fw, cell_bw)

            inputs = paddle.rand((2, 23, 16))
            outputs, final_states = rnn(inputs)

1248 1249 1250 1251 1252 1253
            print(outputs.shape)
            print(final_states[0][0].shape,len(final_states),len(final_states[0]))

            #[4,23,64]
            #[2,32] 2 2

F
Feiyu Chan 已提交
1254 1255 1256
    """

    def __init__(self, cell_fw, cell_bw, time_major=False):
1257
        super().__init__()
F
Feiyu Chan 已提交
1258 1259 1260
        self.cell_fw = cell_fw
        self.cell_bw = cell_bw
        if cell_fw.input_size != cell_bw.input_size:
1261 1262 1263 1264 1265 1266
            raise ValueError(
                "input size of forward cell({}) does not equals"
                "that of backward cell({})".format(
                    cell_fw.input_size, cell_bw.input_size
                )
            )
F
Feiyu Chan 已提交
1267 1268 1269 1270 1271 1272
        for cell in [self.cell_fw, self.cell_bw]:
            if not hasattr(cell, "call"):
                # for non-dygraph mode, `rnn` api uses cell.call
                cell.call = cell.forward
        self.time_major = time_major

1273 1274 1275
    def forward(
        self, inputs, initial_states=None, sequence_length=None, **kwargs
    ):
F
Feiyu Chan 已提交
1276
        if isinstance(initial_states, (list, tuple)):
1277 1278 1279
            assert (
                len(initial_states) == 2
            ), "length of initial_states should be 2 when it is a list/tuple"
F
Feiyu Chan 已提交
1280

1281
        outputs, final_states = birnn(
1282 1283 1284 1285 1286 1287 1288 1289
            self.cell_fw,
            self.cell_bw,
            inputs,
            initial_states,
            sequence_length,
            self.time_major,
            **kwargs
        )
F
Feiyu Chan 已提交
1290 1291 1292
        return outputs, final_states


1293
class RNNBase(LayerList):
F
Feiyu Chan 已提交
1294
    r"""
1295 1296
    RNNBase class for RNN networks. It provides `forward`, `flatten_parameters`
    and other common methods for SimpleRNN, LSTM and GRU.
F
Feiyu Chan 已提交
1297 1298
    """

1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
    def __init__(
        self,
        mode,
        input_size,
        hidden_size,
        num_layers=1,
        direction="forward",
        time_major=False,
        dropout=0.0,
        weight_ih_attr=None,
        weight_hh_attr=None,
        bias_ih_attr=None,
        bias_hh_attr=None,
    ):
1313
        super().__init__()
1314
        bidirectional_list = ["bidirectional", "bidirect"]
1315 1316 1317 1318
        self.mode = mode
        self.input_size = input_size
        self.hidden_size = hidden_size
        self.dropout = dropout
1319
        self.num_directions = 2 if direction in bidirectional_list else 1
1320 1321 1322 1323 1324 1325 1326 1327
        self.time_major = time_major
        self.num_layers = num_layers
        self.state_components = 2 if mode == "LSTM" else 1

        kwargs = {
            "weight_ih_attr": weight_ih_attr,
            "weight_hh_attr": weight_hh_attr,
            "bias_ih_attr": bias_ih_attr,
1328
            "bias_hh_attr": bias_hh_attr,
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
        }

        if mode == "LSTM":
            rnn_cls = LSTMCell
        elif mode == "GRU":
            rnn_cls = GRUCell
        else:
            rnn_cls = SimpleRNNCell
            kwargs["activation"] = self.activation

1339 1340
        if direction in ["forward"]:
            is_reverse = False
1341 1342 1343 1344 1345
            cell = rnn_cls(input_size, hidden_size, **kwargs)
            self.append(RNN(cell, is_reverse, time_major))
            for i in range(1, num_layers):
                cell = rnn_cls(hidden_size, hidden_size, **kwargs)
                self.append(RNN(cell, is_reverse, time_major))
1346
        elif direction in bidirectional_list:
1347 1348 1349 1350 1351 1352 1353 1354 1355
            cell_fw = rnn_cls(input_size, hidden_size, **kwargs)
            cell_bw = rnn_cls(input_size, hidden_size, **kwargs)
            self.append(BiRNN(cell_fw, cell_bw, time_major))
            for i in range(1, num_layers):
                cell_fw = rnn_cls(2 * hidden_size, hidden_size, **kwargs)
                cell_bw = rnn_cls(2 * hidden_size, hidden_size, **kwargs)
                self.append(BiRNN(cell_fw, cell_bw, time_major))
        else:
            raise ValueError(
1356
                "direction should be forward or bidirect (or bidirectional), "
1357 1358
                "received direction = {}".format(direction)
            )
1359

1360
        self.could_use_cudnn = True
1361
        self.could_use_cudnn &= len(self.parameters()) == num_layers * 4 * (
1362 1363
            2 if direction in bidirectional_list else 1
        )
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374

        # Expose params as RNN's attribute, which can make it compatible when
        # replacing small ops composed rnn with cpp rnn kernel.
        # Moreover, `jit.to_static` assumes params are added by current layer
        # and wouldn't include sublayer's params in current layer, which also
        # requires these params are added to current layer for `jit.save`.
        param_names = []
        for layer in range(self.num_layers):
            for direction in range(self.num_directions):
                suffix = '_reverse' if direction == 1 else ''
                param_names.extend(['weight_ih_l{}{}', 'weight_hh_l{}{}'])
1375
                if bias_ih_attr is not False:
1376
                    param_names.append('bias_ih_l{}{}')
1377
                if bias_hh_attr is not False:
1378
                    param_names.append('bias_hh_l{}{}')
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
                param_names = [x.format(layer, suffix) for x in param_names]
        for name, param in zip(param_names, self.parameters()):
            setattr(self, name, param)

        self.flatten_parameters()

    def flatten_parameters(self):
        """
        Resets parameter data pointer to address in continuous memory block for
        cudnn usage.
        """
        if self.could_use_cudnn:
            # layer.parameters() is depth first and ordered
            # for i in layer: for j in direct: w_ih, w_hh, b_ih, b_hh
            # need to reorganize to cudnn param layout:
            # all bias following all weights
            params = self.parameters(include_sublayers=False)
            shape = [np.prod(param.shape) for param in params]
            self._all_weights = [None] * len(params)
            for i, param in enumerate(params):
1399 1400 1401 1402 1403
                offset = (
                    0
                    if i % 4 < 2
                    else (2 * self.num_layers * self.num_directions)
                )
1404 1405 1406 1407 1408 1409 1410
                layer_idx = i // 4
                self._all_weights[offset + layer_idx * 2 + i % 2] = param
            # Wrap using a list to avoid registed into params and saving, maybe
            # need a better way to handle this later. Use `create_parameter` to
            # add both to main_program and startup_program for static-graph.
            # Use Constant initializer to avoid make effect on random generator.
            self._flat_weight = [
1411 1412 1413 1414 1415
                self.create_parameter(
                    shape=[np.sum(shape)],
                    dtype=params[0].dtype,
                    default_initializer=I.Constant(0.0),
                )
1416 1417 1418 1419
            ]
            # dropout state may also can be hided and avoid saving
            # should dropout state be persistable for static-graph
            self._dropout_state = self.create_variable(
1420 1421
                dtype=core.VarDesc.VarType.UINT8
            )
Z
zhiboniu 已提交
1422
            if in_dynamic_mode():
1423
                with paddle.no_grad():
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
                    _legacy_C_ops.coalesce_tensor(
                        self._all_weights,
                        self._all_weights,
                        self._flat_weight[0],
                        "copy_data",
                        True,
                        "use_align",
                        False,
                        "dtype",
                        params[0].dtype,
                    )
1435
                    return
1436
            # for static-graph, append coalesce_tensor into startup program
1437 1438 1439
            with program_guard(
                default_startup_program(), default_startup_program()
            ):
Z
zhiboniu 已提交
1440
                with paddle.no_grad():
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
                    self._helper.append_op(
                        type="coalesce_tensor",
                        inputs={"Input": self._all_weights},
                        outputs={
                            "Output": self._all_weights,
                            "FusedOutput": self._flat_weight,
                        },
                        attrs={
                            "copy_data": True,
                            "use_align": False,
                            "dtype": params[0].dtype,
                        },
                    )
1454 1455 1456 1457 1458

    def _cudnn_impl(self, inputs, initial_states, sequence_length):
        if not self.time_major:
            inputs = paddle.tensor.transpose(inputs, [1, 0, 2])

Y
YuanRisheng 已提交
1459 1460
        if in_dygraph_mode():
            out, _, state = _C_ops.rnn(
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
                inputs,
                initial_states,
                self._all_weights,
                sequence_length,
                self._dropout_state,
                self.dropout,
                self.num_directions == 2,
                self.input_size,
                self.hidden_size,
                self.num_layers,
                self.mode,
                0,
                not self.training,
            )
Y
YuanRisheng 已提交
1475
        elif in_dynamic_mode():
1476
            _, _, out, state = _legacy_C_ops.rnn(
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
                inputs,
                initial_states,
                self._all_weights,
                sequence_length,
                self._dropout_state,
                self.state_components,
                'dropout_prob',
                self.dropout,
                'is_bidirec',
                self.num_directions == 2,
                'input_size',
                self.input_size,
                'hidden_size',
                self.hidden_size,
                'num_layers',
                self.num_layers,
                'mode',
                self.mode,
                'is_test',
                not self.training,
            )
1498 1499 1500 1501 1502 1503 1504
        else:
            out = self._helper.create_variable_for_type_inference(inputs.dtype)
            state = [
                self._helper.create_variable_for_type_inference(inputs.dtype)
                for i in range(self.state_components)
            ]
            reserve = self._helper.create_variable_for_type_inference(
1505 1506
                dtype=core.VarDesc.VarType.UINT8, stop_gradient=True
            )
1507 1508 1509 1510 1511

            inputs = {
                'Input': inputs,
                'WeightList': self._all_weights,
                'PreState': initial_states,
1512
                'SequenceLength': sequence_length,
1513 1514 1515 1516 1517 1518 1519 1520
            }
            attrs = {
                'dropout_prob': self.dropout,
                'is_bidirec': self.num_directions == 2,
                'input_size': self.input_size,
                'hidden_size': self.hidden_size,
                'num_layers': self.num_layers,
                'mode': self.mode,
1521
                'is_test': not self.training,
1522 1523 1524 1525 1526 1527 1528 1529 1530
            }

            outputs = {
                'Out': out,
                'State': state,
                'Reserve': reserve,
                'DropoutState': self._dropout_state,
            }

1531 1532 1533
            self._helper.append_op(
                type="rnn", inputs=inputs, outputs=outputs, attrs=attrs
            )
1534

1535 1536 1537 1538 1539
        out = (
            paddle.tensor.transpose(out, [1, 0, 2])
            if not self.time_major
            else out
        )
G
Guo Sheng 已提交
1540
        return out, tuple(state) if len(state) > 1 else state[0]
1541

F
Feiyu Chan 已提交
1542 1543 1544 1545
    def forward(self, inputs, initial_states=None, sequence_length=None):
        batch_index = 1 if self.time_major else 0
        dtype = inputs.dtype
        if initial_states is None:
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
            state_shape = (
                self.num_layers * self.num_directions,
                -1,
                self.hidden_size,
            )
            initial_states = tuple(
                [
                    paddle.fluid.layers.fill_constant_batch_size_like(
                        inputs, state_shape, dtype, 0, batch_index, 1
                    )
                    for _ in range(self.state_components)
                ]
            )
1559
        else:
1560 1561 1562 1563 1564 1565 1566 1567 1568
            initial_states = (
                [initial_states]
                if isinstance(initial_states, paddle.static.Variable)
                else initial_states
            )

        if self.could_use_cudnn and (
            not paddle.device.is_compiled_with_rocm() or sequence_length is None
        ):
1569 1570 1571
            # Add CPU kernel and dispatch in backend later
            return self._cudnn_impl(inputs, initial_states, sequence_length)

1572 1573 1574
        states = split_states(
            initial_states, self.num_directions == 2, self.state_components
        )
F
Feiyu Chan 已提交
1575 1576 1577 1578
        final_states = []

        for i, rnn_layer in enumerate(self):
            if i > 0:
1579 1580 1581 1582 1583 1584
                inputs = F.dropout(
                    inputs,
                    self.dropout,
                    training=self.training,
                    mode="upscale_in_train",
                )
F
Feiyu Chan 已提交
1585 1586 1587 1588
            outputs, final_state = rnn_layer(inputs, states[i], sequence_length)
            final_states.append(final_state)
            inputs = outputs

1589 1590 1591
        final_states = concat_states(
            final_states, self.num_directions == 2, self.state_components
        )
F
Feiyu Chan 已提交
1592 1593
        return outputs, final_states

1594 1595 1596 1597
    def extra_repr(self):
        main_str = '{input_size}, {hidden_size}'
        if self.num_layers != 1:
            main_str += ', num_layers={num_layers}'
1598
        if self.time_major is not False:
1599 1600 1601 1602 1603
            main_str += ', time_major={time_major}'
        if self.dropout != 0:
            main_str += ', dropout={dropout}'
        return main_str.format(**self.__dict__)

F
Feiyu Chan 已提交
1604

1605
class SimpleRNN(RNNBase):
F
Feiyu Chan 已提交
1606
    r"""
1607
    Multilayer Elman network(SimpleRNN). It takes input sequences and initial
F
Feiyu Chan 已提交
1608 1609
    states as inputs, and returns the output sequences and the final states.

1610 1611 1612
    Each layer inside the SimpleRNN maps the input sequences and initial states
    to the output sequences and final states in the following manner: at each
    step, it takes step inputs(:math:`x_{t}`) and previous
F
Feiyu Chan 已提交
1613 1614 1615 1616 1617
    states(:math:`h_{t-1}`) as inputs, and returns step outputs(:math:`y_{t}`)
    and new states(:math:`h_{t}`).

    .. math::

1618
        h_{t} & = act(W_{ih}x_{t} + b_{ih} + W_{hh}h_{t-1} + b_{hh})
1619

F
Feiyu Chan 已提交
1620
        y_{t} & = h_{t}
1621

1622
    where :math:`act` is for :attr:`activation`.
1623 1624

    Using key word arguments to construct is recommended.
F
Feiyu Chan 已提交
1625

1626
    Parameters:
1627 1628 1629
        input_size (int): The input size of :math:`x` for the first layer's cell.
        hidden_size (int): The hidden size of :math:`h` for each layer's cell.
        num_layers (int, optional): Number of recurrent layers. Defaults to 1.
1630 1631
        direction (str, optional): The direction of the network. It can be "forward"
            or "bidirect"(or "bidirectional"). When "bidirect", the way to merge
1632
            outputs of forward and backward is concatenating. Defaults to "forward".
1633 1634
        time_major (bool, optional): Whether the first dimension of the input
            means the time steps. If time_major is True, the shape of Tensor is
1635 1636
            [time_steps,batch_size,input_size], otherwise [batch_size, time_steps,input_size].
            Defaults to False. `time_steps` means the length of input sequence.
1637 1638
        dropout (float, optional): The droput probability. Dropout is applied
            to the input of each layer except for the first layer. The range of
1639
            dropout from 0 to 1. Defaults to 0.
1640
        activation (str, optional): The activation in each SimpleRNN cell. It can be
1641
            `tanh` or `relu`. Defaults to `tanh`.
1642
        weight_ih_attr (ParamAttr, optional): The parameter attribute for
F
Feiyu Chan 已提交
1643
            `weight_ih` of each cell. Defaults to None.
1644
        weight_hh_attr (ParamAttr, optional): The parameter attribute for
F
Feiyu Chan 已提交
1645
            `weight_hh` of each cell. Defaults to None.
1646
        bias_ih_attr (ParamAttr, optional): The parameter attribute for the
F
Feiyu Chan 已提交
1647
            `bias_ih` of each cells. Defaults to None.
1648
        bias_hh_attr (ParamAttr, optional): The parameter attribute for the
F
Feiyu Chan 已提交
1649
            `bias_hh` of each cells. Defaults to None.
1650
        name (str, optional): Name for the operation (optional, default is
F
Feiyu Chan 已提交
1651 1652
            None). For more information, please refer to :ref:`api_guide_Name`.

1653
    Inputs:
1654
        - **inputs** (Tensor): the input sequence. If `time_major` is True, the shape is `[time_steps, batch_size, input_size]`, else, the shape is `[batch_size, time_steps, input_size]`. `time_steps` means the length of the input sequence.
1655 1656
        - **initial_states** (Tensor, optional): the initial state. The shape is `[num_layers * num_directions, batch_size, hidden_size]`. If initial_state is not given, zero initial states are used.
        - **sequence_length** (Tensor, optional): shape `[batch_size]`, dtype: int64 or int32. The valid lengths of input sequences. Defaults to None. If `sequence_length` is not None, the inputs are treated as padded sequences. In each input sequence, elements whose time step index are not less than the valid length are treated as paddings.
F
Feiyu Chan 已提交
1657 1658

    Returns:
1659

1660
        - **outputs** (Tensor): the output sequence. If `time_major` is True, the shape is `[time_steps, batch_size, num_directions * hidden_size]`, else, the shape is `[batch_size, time_steps, num_directions * hidden_size]`. Note that `num_directions` is 2 if direction is "bidirectional" else 1. `time_steps` means the length of the output sequence.
1661

1662
        - **final_states** (Tensor): final states. The shape is `[num_layers * num_directions, batch_size, hidden_size]`. Note that `num_directions` is 2 if direction is "bidirectional" (the index of forward states are 0, 2, 4, 6... and the index of backward states are 1, 3, 5, 7...), else 1.
1663 1664 1665 1666 1667 1668

    Variables:
        - **weight_ih_l[k]**: the learnable input-hidden weights of the k-th layer. If `k = 0`, the shape is `[hidden_size, input_size]`. Otherwise, the shape is `[hidden_size, num_directions * hidden_size]`.
        - **weight_hh_l[k]**: the learnable hidden-hidden weights of the k-th layer, with shape `[hidden_size, hidden_size]`.
        - **bias_ih_l[k]**: the learnable input-hidden bias of the k-th layer, with shape `[hidden_size]`.
        - **bias_hh_l[k]**: the learnable hidden-hidden bias of the k-th layer, with shape `[hidden_size]`.
1669

F
Feiyu Chan 已提交
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
    Examples:

        .. code-block:: python

            import paddle

            rnn = paddle.nn.SimpleRNN(16, 32, 2)

            x = paddle.randn((4, 23, 16))
            prev_h = paddle.randn((2, 4, 32))
            y, h = rnn(x, prev_h)

1682 1683 1684 1685 1686 1687
            print(y.shape)
            print(h.shape)

            #[4,23,32]
            #[2,4,32]

F
Feiyu Chan 已提交
1688 1689
    """

1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
    def __init__(
        self,
        input_size,
        hidden_size,
        num_layers=1,
        direction="forward",
        time_major=False,
        dropout=0.0,
        activation="tanh",
        weight_ih_attr=None,
        weight_hh_attr=None,
        bias_ih_attr=None,
        bias_hh_attr=None,
        name=None,
    ):
1705 1706 1707 1708
        if activation == "tanh":
            mode = "RNN_TANH"
        elif activation == "relu":
            mode = "RNN_RELU"
F
Feiyu Chan 已提交
1709
        else:
1710 1711
            raise ValueError("Unknown activation '{}'".format(activation))
        self.activation = activation
1712
        super().__init__(
1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
            mode,
            input_size,
            hidden_size,
            num_layers,
            direction,
            time_major,
            dropout,
            weight_ih_attr,
            weight_hh_attr,
            bias_ih_attr,
            bias_hh_attr,
        )
F
Feiyu Chan 已提交
1725 1726


1727
class LSTM(RNNBase):
F
Feiyu Chan 已提交
1728
    r"""
1729
    Multilayer LSTM. It takes a sequence and an initial state as inputs, and
F
Feiyu Chan 已提交
1730 1731
    returns the output sequences and the final states.

1732 1733 1734 1735
    Each layer inside the LSTM maps the input sequences and initial states
    to the output sequences and final states in the following manner: at each
    step, it takes step inputs(:math:`x_{t}`) and previous
    states(:math:`h_{t-1}, c_{t-1}`) as inputs, and returns step
F
Feiyu Chan 已提交
1736 1737 1738 1739 1740
    outputs(:math:`y_{t}`) and new states(:math:`h_{t}, c_{t}`).

    .. math::

        i_{t} & = \sigma(W_{ii}x_{t} + b_{ii} + W_{hi}h_{t-1} + b_{hi})
1741

F
Feiyu Chan 已提交
1742
        f_{t} & = \sigma(W_{if}x_{t} + b_{if} + W_{hf}h_{t-1} + b_{hf})
1743

F
Feiyu Chan 已提交
1744
        o_{t} & = \sigma(W_{io}x_{t} + b_{io} + W_{ho}h_{t-1} + b_{ho})
1745 1746 1747 1748 1749 1750 1751

        \widetilde{c}_{t} & = \tanh (W_{ig}x_{t} + b_{ig} + W_{hg}h_{t-1} + b_{hg})

        c_{t} & = f_{t} * c_{t-1} + i_{t} * \widetilde{c}_{t}

        h_{t} & = o_{t} * \tanh(c_{t})

F
Feiyu Chan 已提交
1752 1753
        y_{t} & = h_{t}

1754
    where :math:`\sigma` is the sigmoid fucntion, and * is the elemetwise
F
Feiyu Chan 已提交
1755 1756
    multiplication operator.

1757 1758
    Using key word arguments to construct is recommended.

1759
    Parameters:
1760 1761 1762
        input_size (int): The input size of :math:`x` for the first layer's cell.
        hidden_size (int): The hidden size of :math:`h` for each layer's cell.
        num_layers (int, optional): Number of recurrent layers. Defaults to 1.
1763 1764
        direction (str, optional): The direction of the network. It can be "forward"
            or "bidirect"(or "bidirectional"). When "bidirect", the way to merge
1765
            outputs of forward and backward is concatenating. Defaults to "forward".
1766 1767
        time_major (bool, optional): Whether the first dimension of the input
            means the time steps. If time_major is True, the shape of Tensor is
1768 1769
            [time_steps,batch_size,input_size], otherwise [batch_size, time_steps,input_size].
            Defaults to False. `time_steps` means the length of input sequence.
1770 1771
        dropout (float, optional): The droput probability. Dropout is applied
            to the input of each layer except for the first layer. The range of
1772
            dropout from 0 to 1. Defaults to 0.
1773
        weight_ih_attr (ParamAttr, optional): The parameter attribute for
F
Feiyu Chan 已提交
1774
            `weight_ih` of each cell. Default: None.
1775
        weight_hh_attr (ParamAttr, optional): The parameter attribute for
F
Feiyu Chan 已提交
1776
            `weight_hh` of each cell. Default: None.
1777
        bias_ih_attr (ParamAttr, optional): The parameter attribute for the
F
Feiyu Chan 已提交
1778
            `bias_ih` of each cells. Default: None.
1779
        bias_hh_attr (ParamAttr, optional): The parameter attribute for the
F
Feiyu Chan 已提交
1780
            `bias_hh` of each cells. Default: None.
1781
        name (str, optional): Name for the operation (optional, default is
F
Feiyu Chan 已提交
1782 1783 1784
            None). For more information, please refer to :ref:`api_guide_Name`.

    Inputs:
1785
        - **inputs** (Tensor): the input sequence. If `time_major` is True, the shape is `[time_steps, batch_size, input_size]`, else, the shape is `[batch_size, time_steps, input_size]`. `time_steps` means the length of the input sequence.
1786
        - **initial_states** (list|tuple, optional): the initial state, a list/tuple of (h, c), the shape of each is `[num_layers * num_directions, batch_size, hidden_size]`. If initial_state is not given, zero initial states are used.
1787
        - **sequence_length** (Tensor, optional): shape `[batch_size]`, dtype: int64 or int32. The valid lengths of input sequences. Defaults to None. If `sequence_length` is not None, the inputs are treated as padded sequences. In each input sequence, elements whos time step index are not less than the valid length are treated as paddings.
F
Feiyu Chan 已提交
1788 1789

    Returns:
1790

1791
        - **outputs** (Tensor): the output sequence. If `time_major` is True, the shape is `[time_steps, batch_size, num_directions * hidden_size]`, If `time_major` is False, the shape is `[batch_size, time_steps, num_directions * hidden_size]`. Note that `num_directions` is 2 if direction is "bidirectional" else 1. `time_steps` means the length of the output sequence.
1792

1793
        - **final_states** (tuple): the final state, a tuple of two tensors, h and c. The shape of each is `[num_layers * num_directions, batch_size, hidden_size]`. Note that `num_directions` is 2 if direction is "bidirectional" (the index of forward states are 0, 2, 4, 6... and the index of backward states are 1, 3, 5, 7...), else 1.
1794 1795 1796 1797 1798 1799

    Variables:
        - **weight_ih_l[k]**: the learnable input-hidden weights of the k-th layer. If `k = 0`, the shape is `[hidden_size, input_size]`. Otherwise, the shape is `[hidden_size, num_directions * hidden_size]`.
        - **weight_hh_l[k]**: the learnable hidden-hidden weights of the k-th layer, with shape `[hidden_size, hidden_size]`.
        - **bias_ih_l[k]**: the learnable input-hidden bias of the k-th layer, with shape `[hidden_size]`.
        - **bias_hh_l[k]**: the learnable hidden-hidden bias of the k-th layer, swith shape `[hidden_size]`.
1800

F
Feiyu Chan 已提交
1801
    Examples:
1802

F
Feiyu Chan 已提交
1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
        .. code-block:: python

            import paddle

            rnn = paddle.nn.LSTM(16, 32, 2)

            x = paddle.randn((4, 23, 16))
            prev_h = paddle.randn((2, 4, 32))
            prev_c = paddle.randn((2, 4, 32))
            y, (h, c) = rnn(x, (prev_h, prev_c))

1814 1815 1816 1817 1818 1819 1820 1821
            print(y.shape)
            print(h.shape)
            print(c.shape)

            #[4,23,32]
            #[2,4,32]
            #[2,4,32]

F
Feiyu Chan 已提交
1822 1823
    """

1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837
    def __init__(
        self,
        input_size,
        hidden_size,
        num_layers=1,
        direction="forward",
        time_major=False,
        dropout=0.0,
        weight_ih_attr=None,
        weight_hh_attr=None,
        bias_ih_attr=None,
        bias_hh_attr=None,
        name=None,
    ):
1838
        super().__init__(
1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
            "LSTM",
            input_size,
            hidden_size,
            num_layers,
            direction,
            time_major,
            dropout,
            weight_ih_attr,
            weight_hh_attr,
            bias_ih_attr,
            bias_hh_attr,
        )
F
Feiyu Chan 已提交
1851 1852


1853
class GRU(RNNBase):
F
Feiyu Chan 已提交
1854
    r"""
1855
    Multilayer GRU. It takes input sequencse and initial states as inputs, and
F
Feiyu Chan 已提交
1856 1857
    returns the output sequences and the final states.

1858 1859 1860 1861
    Each layer inside the GRU maps the input sequences and initial states
    to the output sequences and final states in the following manner: at each
    step, it takes step inputs(:math:`x_{t}`) and previous
    states(:math:`h_{t-1}`) as inputs, and returns step outputs(:math:`y_{t}`)
F
Feiyu Chan 已提交
1862 1863 1864 1865
    and new states(:math:`h_{t}`).

    .. math::

1866
        r_{t} & = \sigma(W_{ir}x_{t} + b_{ir} + W_{hr}h_{t-1} + b_{hr})
1867

1868
        z_{t} & = \sigma(W_{iz}x_{t} + b_{iz} + W_{hz}h_{t-1} + b_{hz})
1869

1870
        \widetilde{h}_{t} & = \tanh(W_{ic}x_{t} + b_{ic} + r_{t} * (W_{hc}h_{t-1} + b_{hc}))
1871 1872 1873

        h_{t} & = z_{t} * h_{t-1} + (1 - z_{t}) * \widetilde{h}_{t}

F
Feiyu Chan 已提交
1874 1875
        y_{t} & = h_{t}

1876
    where :math:`\sigma` is the sigmoid fucntion, and * is the elemetwise
F
Feiyu Chan 已提交
1877 1878
    multiplication operator.

1879 1880
    Using key word arguments to construct is recommended.

1881
    Parameters:
1882 1883 1884
        input_size (int): The input size of :math:`x` for the first layer's cell.
        hidden_size (int): The hidden size of :math:`h` for each layer's cell.
        num_layers (int, optional): Number of recurrent layers. Defaults to 1.
1885 1886
        direction (str, optional): The direction of the network. It can be "forward"
            or "bidirect"(or "bidirectional"). When "bidirect", the way to merge
1887
            outputs of forward and backward is concatenating. Defaults to "forward".
1888 1889
        time_major (bool, optional): Whether the first dimension of the input
            means the time steps. If time_major is True, the shape of Tensor is
1890 1891
            [time_steps,batch_size,input_size], otherwise [batch_size, time_steps,input_size].
            Defaults to False. `time_steps` means the length of input sequence.
1892 1893
        dropout (float, optional): The droput probability. Dropout is applied
            to the input of each layer except for the first layer. The range of
1894
            dropout from 0 to 1. Defaults to 0.
1895
        weight_ih_attr (ParamAttr, optional): The parameter attribute for
F
Feiyu Chan 已提交
1896
            `weight_ih` of each cell. Default: None.
1897
        weight_hh_attr (ParamAttr, optional): The parameter attribute for
F
Feiyu Chan 已提交
1898
            `weight_hh` of each cell. Default: None.
1899
        bias_ih_attr (ParamAttr, optional): The parameter attribute for the
F
Feiyu Chan 已提交
1900
            `bias_ih` of each cells. Default: None.
1901
        bias_hh_attr (ParamAttr, optional): The parameter attribute for the
F
Feiyu Chan 已提交
1902
            `bias_hh` of each cells. Default: None.
1903
        name (str, optional): Name for the operation (optional, default is
F
Feiyu Chan 已提交
1904 1905 1906
            None). For more information, please refer to :ref:`api_guide_Name`.

    Inputs:
1907
        - **inputs** (Tensor): the input sequence. If `time_major` is True, the shape is `[time_steps, batch_size, input_size]`, else, the shape is `[batch_size, time_steps, input_size]`. `time_steps` means the length of the input sequence.
1908 1909
        - **initial_states** (Tensor, optional): the initial state. The shape is `[num_layers * num_directions, batch_size, hidden_size]`. If initial_state is not given, zero initial states are used. Defaults to None.
        - **sequence_length** (Tensor, optional): shape `[batch_size]`, dtype: int64 or int32. The valid lengths of input sequences. Defaults to None. If `sequence_length` is not None, the inputs are treated as padded sequences. In each input sequence, elements whos time step index are not less than the valid length are treated as paddings.
F
Feiyu Chan 已提交
1910 1911

    Returns:
1912

1913
        - **outputs** (Tensor): the output sequence. If `time_major` is True, the shape is `[time_steps, batch_size, num_directions * hidden_size]`, else, the shape is `[batch_size, time_steps, num_directions * hidden_size]`. Note that `num_directions` is 2 if direction is "bidirectional" else 1. `time_steps` means the length of the output sequence.
1914

1915
        - **final_states** (Tensor): final states. The shape is `[num_layers * num_directions, batch_size, hidden_size]`. Note that `num_directions` is 2 if direction is "bidirectional" (the index of forward states are 0, 2, 4, 6... and the index of backward states are 1, 3, 5, 7...), else 1.
1916 1917 1918 1919 1920 1921

    Variables:
        - **weight_ih_l[k]**: the learnable input-hidden weights of the k-th layer. If `k = 0`, the shape is `[hidden_size, input_size]`. Otherwise, the shape is `[hidden_size, num_directions * hidden_size]`.
        - **weight_hh_l[k]**: the learnable hidden-hidden weights of the k-th layer, with shape `[hidden_size, hidden_size]`.
        - **bias_ih_l[k]**: the learnable input-hidden bias of the k-th layer, with shape `[hidden_size]`.
        - **bias_hh_l[k]**: the learnable hidden-hidden bias of the k-th layer, with shape `[hidden_size]`.
1922

F
Feiyu Chan 已提交
1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934
    Examples:

        .. code-block:: python

            import paddle

            rnn = paddle.nn.GRU(16, 32, 2)

            x = paddle.randn((4, 23, 16))
            prev_h = paddle.randn((2, 4, 32))
            y, h = rnn(x, prev_h)

1935 1936 1937 1938 1939 1940
            print(y.shape)
            print(h.shape)

            #[4,23,32]
            #[2,4,32]

F
Feiyu Chan 已提交
1941 1942
    """

1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956
    def __init__(
        self,
        input_size,
        hidden_size,
        num_layers=1,
        direction="forward",
        time_major=False,
        dropout=0.0,
        weight_ih_attr=None,
        weight_hh_attr=None,
        bias_ih_attr=None,
        bias_hh_attr=None,
        name=None,
    ):
1957
        super().__init__(
1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969
            "GRU",
            input_size,
            hidden_size,
            num_layers,
            direction,
            time_major,
            dropout,
            weight_ih_attr,
            weight_hh_attr,
            bias_ih_attr,
            bias_hh_attr,
        )