test_bicubic_interp_op.py 17.7 KB
Newer Older
X
xiaoting 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
from op_test import OpTest
import paddle.fluid.core as core
import paddle.fluid as fluid
import paddle
from paddle.fluid import Program, program_guard
L
Li Fuchen 已提交
24
from paddle.nn.functional import interpolate
X
xiaoting 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90


def cubic_1(x, a):
    return ((a + 2) * x - (a + 3)) * x * x + 1


def cubic_2(x, a):
    return ((a * x - 5 * a) * x + 8 * a) * x - 4 * a


def cubic_interp1d(x0, x1, x2, x3, t):
    param = [0, 0, 0, 0]
    a = -0.75
    x_1 = t
    x_2 = 1.0 - t
    param[0] = cubic_2(x_1 + 1.0, a)
    param[1] = cubic_1(x_1, a)
    param[2] = cubic_1(x_2, a)
    param[3] = cubic_2(x_2 + 1.0, a)
    return x0 * param[0] + x1 * param[1] + x2 * param[2] + x3 * param[3]


def value_bound(input, w, h, x, y):
    access_x = int(max(min(x, w - 1), 0))
    access_y = int(max(min(y, h - 1), 0))
    return input[:, :, access_y, access_x]


def bicubic_interp_np(input,
                      out_h,
                      out_w,
                      out_size=None,
                      actual_shape=None,
                      align_corners=True,
                      data_layout='kNCHW'):
    """trilinear interpolation implement in shape [N, C, H, W]"""
    if data_layout == "NHWC":
        input = np.transpose(input, (0, 3, 1, 2))  # NHWC => NCHW
    if out_size is not None:
        out_h = out_size[0]
        out_w = out_size[1]
    if actual_shape is not None:
        out_h = actual_shape[0]
        out_w = actual_shape[1]
    batch_size, channel, in_h, in_w = input.shape

    ratio_h = ratio_w = 0.0
    if out_h > 1:
        if (align_corners):
            ratio_h = (in_h - 1.0) / (out_h - 1.0)
        else:
            ratio_h = 1.0 * in_h / out_h

    if out_w > 1:
        if (align_corners):
            ratio_w = (in_w - 1.0) / (out_w - 1.0)
        else:
            ratio_w = 1.0 * in_w / out_w

    out = np.zeros((batch_size, channel, out_h, out_w))

    for k in range(out_h):
        if (align_corners):
            h = ratio_h * k
        else:
            h = ratio_h * (k + 0.5) - 0.5
91
        input_y = np.floor(h)
X
xiaoting 已提交
92 93 94 95 96 97
        y_t = h - input_y
        for l in range(out_w):
            if (align_corners):
                w = ratio_w * l
            else:
                w = ratio_w * (l + 0.5) - 0.5
98
            input_x = np.floor(w)
X
xiaoting 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111 112
            x_t = w - input_x
            for i in range(batch_size):
                for j in range(channel):
                    coefficients = [0, 0, 0, 0]
                    for ii in range(4):
                        access_x_0 = int(max(min(input_x - 1, in_w - 1), 0))
                        access_x_1 = int(max(min(input_x + 0, in_w - 1), 0))
                        access_x_2 = int(max(min(input_x + 1, in_w - 1), 0))
                        access_x_3 = int(max(min(input_x + 2, in_w - 1), 0))
                        access_y = int(max(min(input_y - 1 + ii, in_h - 1), 0))

                        coefficients[ii] = cubic_interp1d(
                            input[i, j, access_y, access_x_0],
                            input[i, j, access_y, access_x_1],
113 114 115 116 117 118 119
                            input[i, j, access_y,
                                  access_x_2], input[i, j, access_y,
                                                     access_x_3], x_t)
                    out[i, j, k,
                        l] = cubic_interp1d(coefficients[0], coefficients[1],
                                            coefficients[2], coefficients[3],
                                            y_t)
X
xiaoting 已提交
120 121 122 123 124 125
    if data_layout == "NHWC":
        out = np.transpose(out, (0, 2, 3, 1))  # NCHW => NHWC
    return out.astype(input.dtype)


class TestBicubicInterpOp(OpTest):
126

X
xiaoting 已提交
127 128 129 130 131 132
    def setUp(self):
        self.out_size = None
        self.actual_shape = None
        self.data_layout = 'NCHW'
        self.init_test_case()
        self.op_type = "bicubic_interp"
133 134 135
        # NOTE(dev): some AsDispensible input is not used under imperative mode.
        # Skip check_eager while found them in Inputs.
        self.check_eager = True
X
xiaoting 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
        input_np = np.random.random(self.input_shape).astype("float64")

        if self.data_layout == "NCHW":
            in_h = self.input_shape[2]
            in_w = self.input_shape[3]
        else:
            in_h = self.input_shape[1]
            in_w = self.input_shape[2]

        if self.scale > 0:
            out_h = int(in_h * self.scale)
            out_w = int(in_w * self.scale)
        else:
            out_h = self.out_h
            out_w = self.out_w

        output_np = bicubic_interp_np(input_np, out_h, out_w, self.out_size,
                                      self.actual_shape, self.align_corners,
                                      self.data_layout)
        self.inputs = {'X': input_np}
        if self.out_size is not None:
            self.inputs['OutSize'] = self.out_size
158
            self.check_eager = False
X
xiaoting 已提交
159 160
        if self.actual_shape is not None:
            self.inputs['OutSize'] = self.actual_shape
161
            self.check_eager = False
X
xiaoting 已提交
162 163 164 165 166 167 168 169 170 171 172 173

        self.attrs = {
            'out_h': self.out_h,
            'out_w': self.out_w,
            'scale': self.scale,
            'interp_method': self.interp_method,
            'align_corners': self.align_corners,
            'data_layout': self.data_layout
        }
        self.outputs = {'Out': output_np}

    def test_check_output(self):
174
        self.check_output(check_eager=self.check_eager)
X
xiaoting 已提交
175 176

    def test_check_grad(self):
177 178 179 180
        self.check_grad(['X'],
                        'Out',
                        in_place=True,
                        check_eager=self.check_eager)
X
xiaoting 已提交
181 182 183 184 185 186 187 188 189 190 191 192

    def init_test_case(self):
        self.interp_method = 'bicubic'
        self.input_shape = [2, 3, 5, 5]
        self.out_h = 2
        self.out_w = 2
        self.scale = 0.
        self.out_size = np.array([3, 3]).astype("int32")
        self.align_corners = True


class TestBicubicInterpCase1(TestBicubicInterpOp):
193

X
xiaoting 已提交
194 195 196 197 198 199 200 201 202 203
    def init_test_case(self):
        self.interp_method = 'bicubic'
        self.input_shape = [4, 1, 7, 8]
        self.out_h = 1
        self.out_w = 1
        self.scale = 0.
        self.align_corners = True


class TestBicubicInterpCase2(TestBicubicInterpOp):
204

X
xiaoting 已提交
205 206 207 208 209 210 211 212 213 214
    def init_test_case(self):
        self.interp_method = 'bicubic'
        self.input_shape = [3, 3, 9, 6]
        self.out_h = 10
        self.out_w = 8
        self.scale = 0.
        self.align_corners = True


class TestBicubicInterpCase3(TestBicubicInterpOp):
215

X
xiaoting 已提交
216 217 218 219 220 221 222 223 224 225
    def init_test_case(self):
        self.interp_method = 'bicubic'
        self.input_shape = [1, 1, 32, 64]
        self.out_h = 64
        self.out_w = 32
        self.scale = 0.
        self.align_corners = False


class TestBicubicInterpCase4(TestBicubicInterpOp):
226

X
xiaoting 已提交
227 228 229 230 231 232 233 234 235 236 237
    def init_test_case(self):
        self.interp_method = 'bicubic'
        self.input_shape = [4, 1, 7, 8]
        self.out_h = 1
        self.out_w = 1
        self.scale = 0.
        self.out_size = np.array([2, 2]).astype("int32")
        self.align_corners = True


class TestBicubicInterpCase5(TestBicubicInterpOp):
238

X
xiaoting 已提交
239 240 241 242 243 244 245 246 247 248 249
    def init_test_case(self):
        self.interp_method = 'bicubic'
        self.input_shape = [3, 3, 9, 6]
        self.out_h = 11
        self.out_w = 11
        self.scale = 0.
        self.out_size = np.array([6, 4]).astype("int32")
        self.align_corners = False


class TestBicubicInterpCase6(TestBicubicInterpOp):
250

X
xiaoting 已提交
251 252 253 254 255 256 257 258 259 260 261
    def init_test_case(self):
        self.interp_method = 'bicubic'
        self.input_shape = [1, 1, 32, 64]
        self.out_h = 64
        self.out_w = 32
        self.scale = 0
        self.out_size = np.array([64, 32]).astype("int32")
        self.align_corners = False


class TestBicubicInterpSame(TestBicubicInterpOp):
262

X
xiaoting 已提交
263 264 265 266 267 268 269 270 271 272
    def init_test_case(self):
        self.interp_method = 'bicubic'
        self.input_shape = [2, 3, 32, 64]
        self.out_h = 32
        self.out_w = 64
        self.scale = 0.
        self.align_corners = True


class TestBicubicInterpDataLayout(TestBicubicInterpOp):
273

X
xiaoting 已提交
274 275 276 277 278 279 280 281 282 283 284 285
    def init_test_case(self):
        self.interp_method = 'bicubic'
        self.input_shape = [2, 5, 5, 3]
        self.out_h = 2
        self.out_w = 2
        self.scale = 0.
        self.out_size = np.array([3, 3]).astype("int32")
        self.align_corners = True
        self.data_layout = "NHWC"


class TestBicubicInterpOpAPI(unittest.TestCase):
286

X
xiaoting 已提交
287
    def test_case(self):
288
        np.random.seed(200)
X
xiaoting 已提交
289 290 291 292 293 294 295 296
        x_data = np.random.random((2, 3, 6, 6)).astype("float32")
        dim_data = np.array([12]).astype("int32")
        shape_data = np.array([12, 12]).astype("int32")
        actual_size_data = np.array([12, 12]).astype("int32")
        scale_data = np.array([2.0]).astype("float32")

        prog = fluid.Program()
        startup_prog = fluid.Program()
297 298
        place = fluid.CUDAPlace(
            0) if fluid.core.is_compiled_with_cuda() else fluid.CPUPlace()
X
xiaoting 已提交
299 300 301 302 303 304

        with fluid.program_guard(prog, startup_prog):

            x = fluid.data(name="x", shape=[2, 3, 6, 6], dtype="float32")

            dim = fluid.data(name="dim", shape=[1], dtype="int32")
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
            shape_tensor = fluid.data(name="shape_tensor",
                                      shape=[2],
                                      dtype="int32")
            actual_size = fluid.data(name="actual_size",
                                     shape=[2],
                                     dtype="int32")
            scale_tensor = fluid.data(name="scale_tensor",
                                      shape=[1],
                                      dtype="float32")

            out1 = interpolate(x,
                               size=[12, 12],
                               mode='bicubic',
                               align_corners=False)
            out2 = interpolate(x,
                               size=[12, dim],
                               mode='bicubic',
                               align_corners=False)
            out3 = interpolate(x,
                               size=shape_tensor,
                               mode='bicubic',
                               align_corners=False)
            out4 = interpolate(x,
                               size=[12, 12],
                               mode='bicubic',
                               align_corners=False)
            out5 = interpolate(x,
                               scale_factor=scale_tensor,
                               mode='bicubic',
                               align_corners=False)
X
xiaoting 已提交
335 336 337 338 339 340 341 342 343 344 345 346 347 348

            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            results = exe.run(fluid.default_main_program(),
                              feed={
                                  "x": x_data,
                                  "dim": dim_data,
                                  "shape_tensor": shape_data,
                                  "actual_size": actual_size_data,
                                  "scale_tensor": scale_data
                              },
                              fetch_list=[out1, out2, out3, out4, out5],
                              return_numpy=True)

349 350 351 352
            expect_res = bicubic_interp_np(x_data,
                                           out_h=12,
                                           out_w=12,
                                           align_corners=False)
X
xiaoting 已提交
353
            for res in results:
354
                np.testing.assert_allclose(res, expect_res, rtol=1e-05)
X
xiaoting 已提交
355 356 357

        with fluid.dygraph.guard():
            x = fluid.dygraph.to_variable(x_data)
358 359 360 361
            interp = interpolate(x,
                                 size=[12, 12],
                                 mode='bicubic',
                                 align_corners=False)
X
xiaoting 已提交
362
            dy_result = interp.numpy()
363 364 365 366
            expect = bicubic_interp_np(x_data,
                                       out_h=12,
                                       out_w=12,
                                       align_corners=False)
367
            np.testing.assert_allclose(dy_result, expect, rtol=1e-05)
X
xiaoting 已提交
368 369 370


class TestBicubicOpError(unittest.TestCase):
371

X
xiaoting 已提交
372 373 374
    def test_errors(self):
        with program_guard(Program(), Program()):
            # the input of interpoalte must be Variable.
375 376
            x1 = fluid.create_lod_tensor(np.array([-1, 3, 5, 5]),
                                         [[1, 1, 1, 1]], fluid.CPUPlace())
X
xiaoting 已提交
377 378 379 380 381 382
            self.assertRaises(TypeError, interpolate, x1)

            def test_mode_type():
                # mode must be "BILINEAR" "TRILINEAR" "NEAREST" "BICUBIC"
                x = fluid.data(name="x", shape=[2, 3, 6, 6], dtype="float32")

383 384 385 386
                out = interpolate(x,
                                  size=[12, 12],
                                  mode='UNKONWN',
                                  align_corners=False)
X
xiaoting 已提交
387 388 389

            def test_input_shape():
                x = fluid.data(name="x", shape=[2], dtype="float32")
390 391 392 393
                out = interpolate(x,
                                  size=[12, 12],
                                  mode='BICUBIC',
                                  align_corners=False)
X
xiaoting 已提交
394 395 396

            def test_align_corcers():
                x = fluid.data(name="x", shape=[2, 3, 6, 6], dtype="float32")
397
                interpolate(x, size=[12, 12], mode='BICUBIC', align_corners=3)
X
xiaoting 已提交
398 399 400

            def test_out_shape():
                x = fluid.data(name="x", shape=[2, 3, 6, 6], dtype="float32")
401 402 403 404
                out = interpolate(x,
                                  size=[12],
                                  mode='bicubic',
                                  align_corners=False)
X
xiaoting 已提交
405 406 407

            def test_attr_data_format():
                # for 5-D input, data_format only can be NCDHW or NDHWC
408 409 410 411 412 413 414
                input = fluid.data(name="input",
                                   shape=[2, 3, 6, 9, 4],
                                   dtype="float32")
                out = interpolate(input,
                                  size=[4, 8, 4, 5],
                                  mode='trilinear',
                                  data_format='NHWC')
X
xiaoting 已提交
415 416 417

            def test_actual_shape():
                # the actual_shape  must be Variable.
418 419 420 421 422 423
                x = fluid.create_lod_tensor(np.array([-1, 3, 5, 5]),
                                            [[1, 1, 1, 1]], fluid.CPUPlace())
                out = interpolate(x,
                                  size=[12, 12],
                                  mode='BICUBIC',
                                  align_corners=False)
X
xiaoting 已提交
424 425 426 427

            def test_scale_value():
                # the scale must be greater than zero.
                x = fluid.data(name="x", shape=[2, 3, 6, 6], dtype="float32")
428 429 430 431 432
                out = interpolate(x,
                                  size=None,
                                  mode='BICUBIC',
                                  align_corners=False,
                                  scale_factor=-2.0)
X
xiaoting 已提交
433 434 435

            def test_attr_5D_input():
                # for 5-D input, data_format only can be NCDHW or NDHWC
436 437 438 439 440 441 442
                input = fluid.data(name="input",
                                   shape=[2, 3, 6, 9, 4],
                                   dtype="float32")
                out = interpolate(input,
                                  size=[4, 8, 4, 5],
                                  mode='trilinear',
                                  data_format='NDHWC')
X
xiaoting 已提交
443 444 445 446

            def test_scale_type():
                # the scale must be greater than zero.
                x = fluid.data(name="x", shape=[2, 3, 6, 6], dtype="float32")
447 448 449 450 451 452 453 454
                scale = fluid.create_lod_tensor(np.array([-1, 3, 5,
                                                          5]), [[1, 1, 1, 1]],
                                                fluid.CPUPlace())
                out = interpolate(x,
                                  size=None,
                                  mode='bicubic',
                                  align_corners=False,
                                  scale_factor=scale)
X
xiaoting 已提交
455 456 457

            def test_align_mode():
                x = fluid.data(name="x", shape=[2, 3, 6, 6], dtype="float32")
458 459 460 461 462 463
                out = interpolate(x,
                                  size=None,
                                  mode='nearest',
                                  align_corners=False,
                                  align_mode=2,
                                  scale_factor=1.0)
X
xiaoting 已提交
464 465 466

            def test_outshape_and_scale():
                x = fluid.data(name="x", shape=[2, 3, 6, 6], dtype="float32")
467 468 469 470 471
                out = interpolate(x,
                                  size=None,
                                  mode='bicubic',
                                  align_corners=False,
                                  scale_factor=None)
X
xiaoting 已提交
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486

            self.assertRaises(ValueError, test_mode_type)
            self.assertRaises(ValueError, test_input_shape)
            self.assertRaises(TypeError, test_align_corcers)
            self.assertRaises(ValueError, test_attr_data_format)
            self.assertRaises(TypeError, test_actual_shape)
            self.assertRaises(ValueError, test_scale_value)
            self.assertRaises(ValueError, test_out_shape)
            self.assertRaises(ValueError, test_attr_5D_input)
            self.assertRaises(TypeError, test_scale_type)
            self.assertRaises(ValueError, test_align_mode)
            self.assertRaises(ValueError, test_outshape_and_scale)


if __name__ == "__main__":
487
    paddle.enable_static()
X
xiaoting 已提交
488
    unittest.main()