matmul_op_npu.cc 6.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <memory>
#include <string>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/op_version_registry.h"
#include "paddle/fluid/operators/npu_op_runner.h"

namespace paddle {
namespace operators {

template <typename DeviceContext, typename T>
class MatMulNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<framework::Tensor>("X");
    auto* y = ctx.Input<framework::Tensor>("Y");
    auto* out = ctx.Output<framework::Tensor>("Out");
    bool transpose_x = ctx.Attr<bool>("transpose_X");
    bool transpose_y = ctx.Attr<bool>("transpose_Y");

    if (x->dims().size() == 2) {
      out->mutable_data<T>(ctx.GetPlace());

      const auto& runner = NpuOpRunner(
          "MatMul", {*x, *y}, {*out},
          {{"transpose_x1", transpose_x}, {"transpose_x2", transpose_y}});

      auto stream =
          ctx.template device_context<paddle::platform::NPUDeviceContext>()
              .stream();
      runner.Run(stream);

    } else if (x->dims().size() > 2) {
      out->mutable_data<T>(ctx.GetPlace());

      const auto& runner =
          NpuOpRunner("BatchMatMul", {*x, *y}, {*out},
                      {{"adj_x1", transpose_x}, {"adj_x2", transpose_y}});

      auto stream =
          ctx.template device_context<paddle::platform::NPUDeviceContext>()
              .stream();
      runner.Run(stream);
    }
  }
};

template <typename DeviceContext, typename T>
class MatMulGradNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<framework::Tensor>("X");
    auto* y = ctx.Input<framework::Tensor>("Y");
    auto* dout = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<framework::Tensor>(framework::GradVarName("Y"));
    bool transpose_y = ctx.Attr<bool>("transpose_Y");
    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();

    if (x->dims().size() == 2) {
      if (transpose_y) {
        if (dx) {
          dx->mutable_data<T>(ctx.GetPlace());
          const auto& runner_dx =
              NpuOpRunner("MatMul", {*dout, *y}, {*dx},
                          {{"transpose_x1", false}, {"transpose_x2", false}});

          runner_dx.Run(stream);
        }
        if (dy) {
          dy->mutable_data<T>(ctx.GetPlace());
          const auto& runner_dy =
              NpuOpRunner("MatMul", {*dout, *x}, {*dy},
                          {{"transpose_x1", true}, {"transpose_x2", false}});

          runner_dy.Run(stream);
        }

      } else {
        if (dx) {
          dx->mutable_data<T>(ctx.GetPlace());
          const auto& runner_dx =
              NpuOpRunner("MatMul", {*dout, *y}, {*dx},
                          {{"transpose_x1", false}, {"transpose_x2", true}});

          runner_dx.Run(stream);
        }
        if (dy) {
          dy->mutable_data<T>(ctx.GetPlace());
          const auto& runner_dy =
              NpuOpRunner("MatMul", {*x, *dout}, {*dy},
                          {{"transpose_x1", true}, {"transpose_x2", false}});

          runner_dy.Run(stream);
        }
      }
    } else if (x->dims().size() > 2) {
      if (transpose_y) {
        if (dx) {
          dx->mutable_data<T>(ctx.GetPlace());
          const auto& runner_dx =
              NpuOpRunner("BatchMatMul", {*dout, *y}, {*dx},
                          {{"adj_x1", false}, {"adj_x2", false}});

          runner_dx.Run(stream);
        }
        if (dy) {
          dy->mutable_data<T>(ctx.GetPlace());
          const auto& runner_dy =
              NpuOpRunner("BatchMatMul", {*dout, *x}, {*dy},
                          {{"adj_x1", true}, {"adj_x2", false}});

          runner_dy.Run(stream);
        }
      } else {
        if (dx) {
          dx->mutable_data<T>(ctx.GetPlace());
          const auto& runner_dx =
              NpuOpRunner("BatchMatMul", {*dout, *y}, {*dx},
                          {{"adj_x1", false}, {"adj_x2", true}});

          runner_dx.Run(stream);
        }
        if (dy) {
          dy->mutable_data<T>(ctx.GetPlace());
          if ((x->dims().size() == 3) && (dout->dims().size() == 3) &&
              (dy->dims().size() == 2)) {
L
Leo Chen 已提交
143 144 145 146
            framework::Tensor dout_tmp;
            dout_tmp.ShareDataWith(*dout);
            std::vector<int> vec_dim =
                framework::vectorize<int>(dout_tmp.dims());
147
            std::vector<int> vec_dim_v{vec_dim[0] * vec_dim[1], vec_dim[2]};
L
Leo Chen 已提交
148
            dout_tmp.Resize(framework::make_ddim(vec_dim_v));
149

L
Leo Chen 已提交
150 151 152 153
            framework::Tensor x_tmp;
            x_tmp.ShareDataWith(*x);
            std::vector<int> vec_dim_x =
                framework::vectorize<int>(x_tmp.dims());
154 155
            std::vector<int> vec_dim_x_v{vec_dim_x[0] * vec_dim_x[1],
                                         vec_dim_x[2]};
L
Leo Chen 已提交
156
            x_tmp.Resize(framework::make_ddim(vec_dim_x_v));
157
            const auto& runner_dy =
L
Leo Chen 已提交
158
                NpuOpRunner("MatMul", {x_tmp, dout_tmp}, {*dy},
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
                            {{"transpose_x1", true}, {"transpose_x2", false}});
            runner_dy.Run(stream);
          } else {
            const auto& runner_dy =
                NpuOpRunner("BatchMatMul", {*x, *dout}, {*dy},
                            {{"adj_x1", true}, {"adj_x2", false}});
            runner_dy.Run(stream);
          }
        }
      }
    }
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_NPU_KERNEL(
    matmul, ops::MatMulNPUKernel<paddle::platform::NPUDeviceContext, float>,
    ops::MatMulNPUKernel<paddle::platform::NPUDeviceContext,
                         paddle::platform::float16>);
REGISTER_OP_NPU_KERNEL(
    matmul_grad,
    ops::MatMulGradNPUKernel<paddle::platform::NPUDeviceContext, float>,
    ops::MatMulGradNPUKernel<paddle::platform::NPUDeviceContext,
                             paddle::platform::float16>);