fleet_base.py 10.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import abc

17
import paddle.fluid as fluid
T
tangwei12 已提交
18
from paddle.fluid.executor import Executor
19
from paddle.fluid.optimizer import SGD
M
MRXLT 已提交
20
from paddle.optimizer import SGD as SGD_v2
21

C
Chengmo 已提交
22
from paddle.fluid.incubate.fleet.base.mode import Mode
23
from paddle.distributed.fleet.base.role_maker import RoleMakerBase
24 25 26
from paddle.fluid.contrib.mixed_precision.decorator import (
    OptimizerWithMixedPrecision,
)
C
Chengmo 已提交
27
from . import mode
28

C
Chengmo 已提交
29 30
__all__ = ['Fleet', 'DistributedOptimizer']
__all__ += mode.__all__
31 32


33
class Fleet(metaclass=abc.ABCMeta):
34 35 36 37 38 39 40 41 42
    """
    Fleet is the base class, transpiler and pslib are implementation of Fleet.

    Args:
        mode(Mode): the implementation of Fleet's mode.

    Returns:
        None
    """
43

44
    def __init__(self, mode):
T
tangwei12 已提交
45 46 47 48 49
        self._is_initialized = False
        self._mode = mode
        self._optimizer = None
        self._role_maker = None
        self._executor = None
50 51 52 53 54 55 56 57 58

    def is_first_worker(self):
        """
        Check whether the node is the first instance of worker.

        Returns:
            bool: True if this is the first node of worker,
                  False if not.
        """
T
tangwei12 已提交
59
        return self._role_maker.is_first_worker()
60

T
tangwei12 已提交
61
    def worker_index(self):
62
        """
T
tangwei12 已提交
63
        Get current worker index.
64 65 66 67

        Returns:
            int: node id
        """
T
tangwei12 已提交
68
        return self._role_maker.worker_index()
69

T
tangwei12 已提交
70
    def worker_num(self):
71 72 73 74
        """
        Get current total worker number.

        Returns:
75
            int: worker numbers
76
        """
77
        return self._role_maker.worker_num()
78 79 80 81 82 83 84 85 86

    def is_worker(self):
        """
        Check whether the node is an instance of worker.

        Returns:
            bool: True if this is a node of worker,
                  False if not.
        """
T
tangwei12 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
        return self._role_maker.is_worker()

    def worker_endpoints(self, to_string=False):
        """
        Get current server endpoints, such as ["127.0.0.1:1001", "127.0.0.1:1002"].

        Returns:
            list/string: server endpoints
        """

        if to_string:
            return ",".join(self._role_maker.get_trainer_endpoints())
        else:
            return self._role_maker.get_trainer_endpoints()

    def server_num(self):
        """
        Get current total worker number.

        Returns:
            int: server number
        """
        return len(self._role_maker.get_pserver_endpoints())

    def server_index(self):
        """
        Get current server index.

        Returns:
            int: node id
        """
        return self._role_maker.server_index()

    def server_endpoints(self, to_string=False):
        """
        Get current server endpoints, such as ["127.0.0.1:1001", "127.0.0.1:1002"].

        Returns:
            list/string: server endpoints
        """

        if to_string:
            return ",".join(self._role_maker.get_pserver_endpoints())
        else:
            return self._role_maker.get_pserver_endpoints()
132 133 134 135 136 137 138

    def is_server(self):
        """
        Check whether the node is an instance of server.

        Returns:
            bool: True if this is a node of server,
139
                  False if not
140
        """
T
tangwei12 已提交
141
        return self._role_maker.is_server()
142

T
Thunderbrook 已提交
143 144 145 146 147 148 149 150 151 152
    def is_xpu(self):
        """
        Check whether the node is an instance of server.

        Returns:
            bool: True if this is a node of server,
                  False if not.
        """
        return self._role_maker.is_xpu()

153 154 155
    def split_files(self, files):
        """
        split files before distributed training,
156 157 158 159
        example 1: files is [a, b, c ,d, e]  and trainer_num = 2, then trainer
                   0 gets [a, b, c] and trainer 1 gets [d, e].
        example 2: files is [a, b], and trainer_num = 3, then trainer 0 gets
                   [a], trainer 1 gets [b],  trainer 2 gets []
160 161 162 163 164 165 166

        Args:
            files(list): file list need to be read.

        Returns:
            list: files belongs to this worker.
        """
167 168 169
        if not isinstance(files, list):
            raise TypeError("files should be a list of file need to be read.")

T
tangwei12 已提交
170
        trainer_id = self.worker_index()
T
tangwei12 已提交
171 172 173
        trainers = self.worker_num()

        remainder = len(files) % trainers
174
        blocksize = len(files) // trainers
T
tangwei12 已提交
175 176 177 178 179 180 181 182

        blocks = [blocksize] * trainers
        for i in range(remainder):
            blocks[i] += 1

        trainer_files = [[]] * trainers
        begin = 0
        for i in range(trainers):
183
            trainer_files[i] = files[begin : begin + blocks[i]]
T
tangwei12 已提交
184 185 186
            begin += blocks[i]

        return trainer_files[trainer_id]
187

188
    def init(self, role_maker=None):
189 190 191 192 193 194 195 196 197 198 199
        """
        should be called only once in user's python scripts,
        init() will initialize RoleMaker which is used for identifying
            current node's role, e.g. worker, server, etc.

        Args:
            role_maker(RoleMakerBase): subclass of RoleMakerBase.

        Returns:
            None
        """
200
        self._executor = Executor(fluid.CPUPlace())
201 202

        if role_maker and not isinstance(role_maker, RoleMakerBase):
203 204 205 206
            from paddle.fluid.incubate.fleet.base.role_maker import (
                RoleMakerBase as RoleMakerBaseIncubate,
            )

207 208
            if role_maker and not isinstance(role_maker, RoleMakerBaseIncubate):
                raise TypeError(
209 210
                    "role_maker must be an instance of RoleMakerBase"
                )
211

212
        self._role_maker = role_maker
213
        self._role_maker.generate_role()
T
tangwei12 已提交
214
        self._is_initialized = True
215

X
xujiaqi01 已提交
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
    def all_reduce_worker(self, input, output):
        """
        all reduce between workers, only support array of one dim.

        Args:
            input(list|numpy.array): array of one dim
            output(list|numpy.array): array of one dim
        """
        self._role_maker.all_reduce_worker(input, output)

    def barrier_worker(self):
        """
        barrier between workers
        """
        self._role_maker.barrier_worker()

232
    @abc.abstractmethod
T
tangwei12 已提交
233
    def init_worker(self):
234 235 236
        pass

    @abc.abstractmethod
237
    def init_server(self, model_dir=None, **kwargs):
238 239 240
        pass

    @abc.abstractmethod
241
    def run_server(self):
242 243 244 245 246 247 248 249 250 251 252
        pass

    @abc.abstractmethod
    def stop_worker(self):
        pass

    @abc.abstractmethod
    def distributed_optimizer(self, optimizer, strategy=None):
        pass

    @abc.abstractmethod
253 254 255 256 257 258 259 260 261
    def save_inference_model(
        self,
        executor,
        dirname,
        feeded_var_names,
        target_vars,
        main_program=None,
        export_for_deployment=True,
    ):
262 263 264
        pass

    @abc.abstractmethod
265
    def save_persistables(self, executor, dirname, main_program=None):
266 267 268
        pass


269
class DistributedOptimizer(metaclass=abc.ABCMeta):
270 271 272 273 274 275 276 277 278 279 280
    """
    DistributedOptimizer is a wrapper for paddle.fluid.optimizer
    A user should pass a paddle.fluid.optimizer to DistributedOptimizer
    minimize() function is implemented.
    DistributedOptimizer is the starting point for a user who wants to
    run distributed training. The optimized information will be stored in
    Fleet() instance who holds the global information about current distributed
    training.

    Args:
        optimizer(Optimizer): subclass of Optimizer.
T
tangwei12 已提交
281
        strategy(any): the user define config for Optimizer.
282 283 284 285 286

    Returns:
        None

    """
287

288
    def __init__(self, optimizer, strategy=None):
289 290 291 292 293
        if (
            not isinstance(optimizer, SGD.__bases__)
            and not isinstance(optimizer, OptimizerWithMixedPrecision)
            and not isinstance(optimizer, SGD_v2.__base__)
        ):
294
            raise TypeError("optimizer must be an instance of Optimizer")
295 296 297 298 299

        self._optimizer = optimizer
        self._strategy = strategy

    @abc.abstractmethod
300 301 302 303 304 305 306 307
    def backward(
        self,
        loss,
        startup_program=None,
        parameter_list=None,
        no_grad_set=None,
        callbacks=None,
    ):
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
        """
        First part of `minimize`, do auto-diff to append backward ops for
        the current program.

        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
            parameter_list (list): list of Variables to update.
            no_grad_set (set|None): set of Variables should be ignored.
            callbacks (list|None): list of callables to run when appending backward
                operator for one parameter.

        Return:
            list: list of (param, grad) pair, grad is the output of backward.

        Examples:
            See examples in `apply_gradients`.
        """
        pass

    @abc.abstractmethod
    def apply_gradients(self, params_grads):
        """
        Second part of `minimize`, appending optimization operators for
        given `params_grads` pairs.

        Args:
            params_grads (list): list of (param, grad) pair to do optimization.

        Returns:
            list: A list of operators appended to the current program.

        Examples:
            .. code-block:: python

                loss = network()
                optimizer = fluid.optimizer.SGD(learning_rate=0.1)
                params_grads = optimizer.backward(loss)
                # you may append operations for params_grads here
                # ...
                optimizer.apply_gradients(params_grads)
        """
        pass

    @abc.abstractmethod
354 355 356 357 358 359 360 361
    def minimize(
        self,
        losses,
        scopes=None,
        startup_programs=None,
        parameter_list=None,
        no_grad_set=None,
    ):
362 363 364 365 366 367 368
        """
        Add operations to minimize `loss` by updating `parameter_list`.

        This method combines interface `backward()` and
        `apply_gradients()` into one.

        Args:
T
tangwei12 已提交
369 370 371
            losses (Variable|Variable List): loss variable to run optimizations.
            scopes (Scope| Scope List): scope instance.
            startup_programs (Program|Program List): startup_program for initializing parameters
372 373 374 375 376 377 378 379 380
                in `parameter_list`.
            parameter_list (list): list of Variables to update.
            no_grad_set (set|None): set of Variables should be ignored.

        Returns:
            tuple: (optimize_ops, params_grads) which are, list of operators appended;
            and list of (param, grad) Variables pair for optimization.
        """
        pass