test_pad3d_op.py 29.6 KB
Newer Older
L
littletomatodonkey 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np
from op_test import OpTest
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
import paddle.fluid.core as core

from paddle.fluid import Program, program_guard, Executor, default_main_program


class TestPad3dOp(OpTest):
    def setUp(self):
        paddle.enable_static()
        self.value = 0.0
        self.initTestCase()
        self.op_type = "pad3d"
32
        self.python_api = paddle.nn.functional.pad
L
littletomatodonkey 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
        self.inputs = {'X': np.random.random(self.shape).astype("float64")}
        self.attrs = {}
        if self.variable_paddings:
            self.attrs['paddings'] = []
            self.inputs['Paddings'] = np.array(self.paddings).flatten().astype(
                "int32")
        else:
            self.attrs['paddings'] = np.array(self.paddings).flatten().astype(
                "int32")
        self.attrs['value'] = self.value
        self.attrs['mode'] = self.mode
        self.attrs['data_format'] = self.data_format
        if self.data_format == "NCDHW":
            paddings = [
                (0, 0),
                (0, 0),
                (self.paddings[4], self.paddings[5]),
                (self.paddings[2], self.paddings[3]),
                (self.paddings[0], self.paddings[1]),
            ]
        else:
            paddings = [
                (0, 0),
                (self.paddings[4], self.paddings[5]),
                (self.paddings[2], self.paddings[3]),
                (self.paddings[0], self.paddings[1]),
                (0, 0),
            ]
        if self.mode == "constant":
            out = np.pad(self.inputs['X'],
                         paddings,
                         mode=self.mode,
                         constant_values=self.value)
        elif self.mode == "reflect":
            out = np.pad(self.inputs['X'], paddings, mode=self.mode)
        elif self.mode == "replicate":
            out = np.pad(self.inputs['X'], paddings, mode="edge")
        elif self.mode == "circular":
            out = np.pad(self.inputs['X'], paddings, mode="wrap")
        self.outputs = {'Out': out}

    def test_check_output(self):
75
        self.check_output(check_eager=True)
L
littletomatodonkey 已提交
76 77

    def test_check_grad_normal(self):
78
        self.check_grad(['X'], 'Out', check_eager=True)
L
littletomatodonkey 已提交
79 80 81 82 83 84 85

    def initTestCase(self):
        self.shape = (2, 3, 4, 5, 6)
        self.paddings = [0, 0, 0, 0, 0, 0]
        self.mode = "constant"
        self.data_format = "NCDHW"
        self.pad_value = 0.0
86
        self.variable_paddings = False
L
littletomatodonkey 已提交
87 88 89 90 91 92 93 94 95


class TestCase1(TestPad3dOp):
    def initTestCase(self):
        self.shape = (2, 3, 4, 5, 6)
        self.paddings = [0, 1, 2, 3, 4, 5]
        self.mode = "constant"
        self.data_format = "NCDHW"
        self.value = 1.0
96
        self.variable_paddings = False
L
littletomatodonkey 已提交
97 98 99 100 101 102 103 104 105


class TestCase2(TestPad3dOp):
    def initTestCase(self):
        self.shape = (2, 3, 4, 5, 6)
        self.paddings = [1, 1, 1, 1, 1, 1]
        self.mode = "constant"
        self.data_format = "NDHWC"
        self.value = 1.0
106
        self.variable_paddings = False
L
littletomatodonkey 已提交
107 108 109 110 111 112 113 114


class TestCase3(TestPad3dOp):
    def initTestCase(self):
        self.shape = (2, 3, 4, 5, 6)
        self.paddings = [0, 1, 1, 0, 2, 3]
        self.mode = "reflect"
        self.data_format = "NCDHW"
115
        self.variable_paddings = False
L
littletomatodonkey 已提交
116 117 118 119 120 121 122 123


class TestCase4(TestPad3dOp):
    def initTestCase(self):
        self.shape = (4, 4, 4, 4, 4)
        self.paddings = [0, 1, 2, 1, 2, 3]
        self.mode = "reflect"
        self.data_format = "NDHWC"
124
        self.variable_paddings = False
L
littletomatodonkey 已提交
125 126 127 128 129 130 131 132


class TestCase5(TestPad3dOp):
    def initTestCase(self):
        self.shape = (2, 3, 4, 5, 6)
        self.paddings = [0, 1, 2, 3, 2, 1]
        self.mode = "replicate"
        self.data_format = "NCDHW"
133
        self.variable_paddings = False
L
littletomatodonkey 已提交
134 135 136 137 138 139 140 141


class TestCase6(TestPad3dOp):
    def initTestCase(self):
        self.shape = (4, 4, 4, 4, 4)
        self.paddings = [5, 4, 2, 1, 2, 3]
        self.mode = "replicate"
        self.data_format = "NDHWC"
142
        self.variable_paddings = False
L
littletomatodonkey 已提交
143 144 145 146 147 148 149 150


class TestCase7(TestPad3dOp):
    def initTestCase(self):
        self.shape = (2, 3, 4, 5, 6)
        self.paddings = [0, 1, 2, 3, 2, 1]
        self.mode = "circular"
        self.data_format = "NCDHW"
151
        self.variable_paddings = False
L
littletomatodonkey 已提交
152 153 154 155 156 157 158 159


class TestCase8(TestPad3dOp):
    def initTestCase(self):
        self.shape = (4, 4, 4, 4, 4)
        self.paddings = [0, 1, 2, 1, 2, 3]
        self.mode = "circular"
        self.data_format = "NDHWC"
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
        self.variable_paddings = False


class TestCase9(TestPad3dOp):
    def initTestCase(self):
        self.shape = (2, 3, 4, 5, 6)
        self.paddings = [0, 1, 2, 3, 4, 5]
        self.mode = "constant"
        self.data_format = "NCDHW"
        self.value = 1.0
        self.variable_paddings = True


class TestCase10(TestPad3dOp):
    def initTestCase(self):
        self.shape = (2, 3, 4, 5, 6)
        self.paddings = [0, 1, 2, 3, 4, 5]
        self.mode = "constant"
        self.data_format = "NDHWC"
        self.value = 1.0
        self.variable_paddings = True
L
littletomatodonkey 已提交
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196


class TestPadAPI(unittest.TestCase):
    def setUp(self):
        self.places = [paddle.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(paddle.CUDAPlace(0))

    def check_static_result_1(self, place):
        paddle.enable_static()
        with program_guard(Program(), Program()):
            input_shape = (1, 2, 3, 4, 5)
            pad = [1, 2, 1, 1, 3, 4]
            mode = "constant"
            value = 100
            input_data = np.random.rand(*input_shape).astype(np.float32)
197
            x = paddle.fluid.data(name="x", shape=input_shape)
198 199 200 201 202
            result = F.pad(x=x,
                           pad=pad,
                           value=value,
                           mode=mode,
                           data_format="NCDHW")
L
littletomatodonkey 已提交
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
            exe = Executor(place)
            fetches = exe.run(default_main_program(),
                              feed={"x": input_data},
                              fetch_list=[result])

            np_out = self._get_numpy_out(input_data, pad, mode, value)
            self.assertTrue(np.allclose(fetches[0], np_out))

    def check_static_result_2(self, place):
        paddle.enable_static()
        with program_guard(Program(), Program()):
            input_shape = (2, 3, 4, 5, 6)
            pad = [1, 2, 1, 1, 1, 2]
            mode = "reflect"
            input_data = np.random.rand(*input_shape).astype(np.float32)
218
            x = paddle.fluid.data(name="x", shape=input_shape)
L
littletomatodonkey 已提交
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
            result1 = F.pad(x=x, pad=pad, mode=mode, data_format="NCDHW")
            result2 = F.pad(x=x, pad=pad, mode=mode, data_format="NDHWC")
            exe = Executor(place)
            fetches = exe.run(default_main_program(),
                              feed={"x": input_data},
                              fetch_list=[result1, result2])

            np_out1 = self._get_numpy_out(
                input_data, pad, mode, data_format="NCDHW")
            np_out2 = self._get_numpy_out(
                input_data, pad, mode, data_format="NDHWC")
            self.assertTrue(np.allclose(fetches[0], np_out1))
            self.assertTrue(np.allclose(fetches[1], np_out2))

    def check_static_result_3(self, place):
        paddle.enable_static()
        with program_guard(Program(), Program()):
            input_shape = (2, 3, 4, 5, 6)
            pad = [1, 2, 1, 1, 3, 4]
            mode = "replicate"
            input_data = np.random.rand(*input_shape).astype(np.float32)
240
            x = paddle.fluid.data(name="x", shape=input_shape)
L
littletomatodonkey 已提交
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
            result1 = F.pad(x=x, pad=pad, mode=mode, data_format="NCDHW")
            result2 = F.pad(x=x, pad=pad, mode=mode, data_format="NDHWC")
            exe = Executor(place)
            fetches = exe.run(default_main_program(),
                              feed={"x": input_data},
                              fetch_list=[result1, result2])

            np_out1 = self._get_numpy_out(
                input_data, pad, mode, data_format="NCDHW")
            np_out2 = self._get_numpy_out(
                input_data, pad, mode, data_format="NDHWC")
            self.assertTrue(np.allclose(fetches[0], np_out1))
            self.assertTrue(np.allclose(fetches[1], np_out2))

    def check_static_result_4(self, place):
        paddle.enable_static()
        with program_guard(Program(), Program()):
            input_shape = (2, 3, 4, 5, 6)
            pad = [1, 2, 1, 1, 3, 4]
            mode = "circular"
            input_data = np.random.rand(*input_shape).astype(np.float32)
262
            x = paddle.fluid.data(name="x", shape=input_shape)
L
littletomatodonkey 已提交
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
            result1 = F.pad(x=x, pad=pad, mode=mode, data_format="NCDHW")
            result2 = F.pad(x=x, pad=pad, mode=mode, data_format="NDHWC")
            exe = Executor(place)
            fetches = exe.run(default_main_program(),
                              feed={"x": input_data},
                              fetch_list=[result1, result2])

            np_out1 = self._get_numpy_out(
                input_data, pad, mode, data_format="NCDHW")
            np_out2 = self._get_numpy_out(
                input_data, pad, mode, data_format="NDHWC")
            self.assertTrue(np.allclose(fetches[0], np_out1))
            self.assertTrue(np.allclose(fetches[1], np_out2))

    def _get_numpy_out(self,
                       input_data,
                       pad,
                       mode,
                       value=0,
                       data_format="NCDHW"):
L
littletomatodonkey 已提交
283 284 285
        if mode == "constant" and len(pad) == len(input_data.shape) * 2:
            pad = np.reshape(pad, (-1, 2)).tolist()
        elif data_format == "NCDHW":
L
littletomatodonkey 已提交
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
            pad = [
                (0, 0),
                (0, 0),
                (pad[4], pad[5]),
                (pad[2], pad[3]),
                (pad[0], pad[1]),
            ]
        elif data_format == "NDHWC":
            pad = [
                (0, 0),
                (pad[4], pad[5]),
                (pad[2], pad[3]),
                (pad[0], pad[1]),
                (0, 0),
            ]
        elif data_format == "NCHW":
            pad = [
                (0, 0),
                (0, 0),
                (pad[2], pad[3]),
                (pad[0], pad[1]),
            ]
        elif data_format == "NHWC":
            pad = [
                (0, 0),
                (pad[2], pad[3]),
                (pad[0], pad[1]),
                (0, 0),
            ]
        elif data_format == "NCL":
            pad = [
                (0, 0),
                (0, 0),
                (pad[0], pad[1]),
            ]
        elif data_format == "NLC":
            pad = [
                (0, 0),
                (pad[0], pad[1]),
                (0, 0),
            ]

        if mode == "constant":
            out = np.pad(input_data, pad, mode=mode, constant_values=value)
        elif mode == "reflect":
            out = np.pad(input_data, pad, mode=mode)
        elif mode == "replicate":
            out = np.pad(input_data, pad, mode="edge")
        elif mode == "circular":
            out = np.pad(input_data, pad, mode="wrap")

        return out

    def test_static(self):
        for place in self.places:
            self.check_static_result_1(place=place)
            self.check_static_result_2(place=place)
            self.check_static_result_3(place=place)
            self.check_static_result_4(place=place)

    def test_dygraph_1(self):
        paddle.disable_static()
        input_shape = (1, 2, 3, 4, 5)
        pad = [1, 2, 1, 1, 3, 4]
L
littletomatodonkey 已提交
350
        pad_3 = [1, 2, 1, 1, 3, 4, 5, 6, 7, 8]
L
littletomatodonkey 已提交
351 352 353 354 355 356 357
        mode = "constant"
        value = 100
        input_data = np.random.rand(*input_shape).astype(np.float32)
        np_out1 = self._get_numpy_out(
            input_data, pad, mode, value, data_format="NCDHW")
        np_out2 = self._get_numpy_out(
            input_data, pad, mode, value, data_format="NDHWC")
L
littletomatodonkey 已提交
358 359
        np_out3 = self._get_numpy_out(
            input_data, pad_3, mode, value, data_format="NCDHW")
L
littletomatodonkey 已提交
360 361 362 363 364 365 366 367 368 369 370 371
        tensor_data = paddle.to_tensor(input_data)

        y1 = F.pad(tensor_data,
                   pad=pad,
                   mode=mode,
                   value=value,
                   data_format="NCDHW")
        y2 = F.pad(tensor_data,
                   pad=pad,
                   mode=mode,
                   value=value,
                   data_format="NDHWC")
L
littletomatodonkey 已提交
372 373 374 375 376
        y3 = F.pad(tensor_data,
                   pad=pad_3,
                   mode=mode,
                   value=value,
                   data_format="NCDHW")
L
littletomatodonkey 已提交
377 378 379

        self.assertTrue(np.allclose(y1.numpy(), np_out1))
        self.assertTrue(np.allclose(y2.numpy(), np_out2))
L
littletomatodonkey 已提交
380
        self.assertTrue(np.allclose(y3.numpy(), np_out3))
L
littletomatodonkey 已提交
381 382 383 384 385

    def test_dygraph_2(self):
        paddle.disable_static()
        input_shape = (2, 3, 4, 5)
        pad = [1, 1, 3, 4]
L
littletomatodonkey 已提交
386
        pad_3 = [1, 2, 1, 1, 3, 4, 5, 6]
L
littletomatodonkey 已提交
387 388 389 390 391 392 393
        mode = "constant"
        value = 100
        input_data = np.random.rand(*input_shape).astype(np.float32)
        np_out1 = self._get_numpy_out(
            input_data, pad, mode, value, data_format="NCHW")
        np_out2 = self._get_numpy_out(
            input_data, pad, mode, value, data_format="NHWC")
L
littletomatodonkey 已提交
394 395
        np_out3 = self._get_numpy_out(
            input_data, pad_3, mode, value, data_format="NCHW")
L
littletomatodonkey 已提交
396 397 398 399 400 401 402 403 404 405 406 407 408 409

        tensor_data = paddle.to_tensor(input_data)
        tensor_pad = paddle.to_tensor(pad, dtype="int32")

        y1 = F.pad(tensor_data,
                   pad=tensor_pad,
                   mode=mode,
                   value=value,
                   data_format="NCHW")
        y2 = F.pad(tensor_data,
                   pad=tensor_pad,
                   mode=mode,
                   value=value,
                   data_format="NHWC")
L
littletomatodonkey 已提交
410 411 412 413 414
        y3 = F.pad(tensor_data,
                   pad=pad_3,
                   mode=mode,
                   value=value,
                   data_format="NCHW")
L
littletomatodonkey 已提交
415 416 417

        self.assertTrue(np.allclose(y1.numpy(), np_out1))
        self.assertTrue(np.allclose(y2.numpy(), np_out2))
L
littletomatodonkey 已提交
418
        self.assertTrue(np.allclose(y3.numpy(), np_out3))
L
littletomatodonkey 已提交
419 420 421 422 423

    def test_dygraph_3(self):
        paddle.disable_static()
        input_shape = (3, 4, 5)
        pad = [3, 4]
L
littletomatodonkey 已提交
424
        pad_3 = [3, 4, 5, 6, 7, 8]
L
littletomatodonkey 已提交
425 426 427 428 429 430 431
        mode = "constant"
        value = 100
        input_data = np.random.rand(*input_shape).astype(np.float32)
        np_out1 = self._get_numpy_out(
            input_data, pad, mode, value, data_format="NCL")
        np_out2 = self._get_numpy_out(
            input_data, pad, mode, value, data_format="NLC")
L
littletomatodonkey 已提交
432 433
        np_out3 = self._get_numpy_out(
            input_data, pad_3, mode, value, data_format="NCL")
L
littletomatodonkey 已提交
434 435 436 437 438 439 440 441 442 443 444 445 446
        tensor_data = paddle.to_tensor(input_data)
        tensor_pad = paddle.to_tensor(pad, dtype="int32")

        y1 = F.pad(tensor_data,
                   pad=tensor_pad,
                   mode=mode,
                   value=value,
                   data_format="NCL")
        y2 = F.pad(tensor_data,
                   pad=tensor_pad,
                   mode=mode,
                   value=value,
                   data_format="NLC")
L
littletomatodonkey 已提交
447 448 449 450 451
        y3 = F.pad(tensor_data,
                   pad=pad_3,
                   mode=mode,
                   value=value,
                   data_format="NCL")
L
littletomatodonkey 已提交
452 453 454

        self.assertTrue(np.allclose(y1.numpy(), np_out1))
        self.assertTrue(np.allclose(y2.numpy(), np_out2))
L
littletomatodonkey 已提交
455
        self.assertTrue(np.allclose(y3.numpy(), np_out3))
L
littletomatodonkey 已提交
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483


class TestPad1dAPI(unittest.TestCase):
    def _get_numpy_out(self,
                       input_data,
                       pad,
                       mode,
                       value=0.0,
                       data_format="NCL"):
        if data_format == "NCL":
            pad = [
                (0, 0),
                (0, 0),
                (pad[0], pad[1]),
            ]
        else:
            pad = [
                (0, 0),
                (pad[0], pad[1]),
                (0, 0),
            ]

        if mode == "constant":
            out = np.pad(input_data, pad, mode=mode, constant_values=value)
        elif mode == "reflect":
            out = np.pad(input_data, pad, mode=mode)
        elif mode == "replicate":
            out = np.pad(input_data, pad, mode="edge")
L
littletomatodonkey 已提交
484 485
        elif mode == "circular":
            out = np.pad(input_data, pad, mode="wrap")
L
littletomatodonkey 已提交
486 487 488 489 490 491 492 493 494 495 496 497 498

        return out

    def setUp(self):
        self.places = [paddle.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(paddle.CUDAPlace(0))

    def test_class(self):
        paddle.disable_static()
        for place in self.places:
            input_shape = (3, 4, 5)
            pad = [1, 2]
499
            pad_int = 1
L
littletomatodonkey 已提交
500 501 502
            value = 100
            input_data = np.random.rand(*input_shape).astype(np.float32)

L
littletomatodonkey 已提交
503 504 505
            pad_reflection = nn.Pad1D(padding=pad, mode="reflect")
            pad_replication = nn.Pad1D(padding=pad, mode="replicate")
            pad_constant = nn.Pad1D(padding=pad, mode="constant", value=value)
506 507
            pad_constant_int = nn.Pad1D(
                padding=pad_int, mode="constant", value=value)
L
littletomatodonkey 已提交
508
            pad_circular = nn.Pad1D(padding=pad, mode="circular")
L
littletomatodonkey 已提交
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526

            data = paddle.to_tensor(input_data)

            output = pad_reflection(data)
            np_out = self._get_numpy_out(
                input_data, pad, "reflect", data_format="NCL")
            self.assertTrue(np.allclose(output.numpy(), np_out))

            output = pad_replication(data)
            np_out = self._get_numpy_out(
                input_data, pad, "replicate", data_format="NCL")
            self.assertTrue(np.allclose(output.numpy(), np_out))

            output = pad_constant(data)
            np_out = self._get_numpy_out(
                input_data, pad, "constant", value=value, data_format="NCL")
            self.assertTrue(np.allclose(output.numpy(), np_out))

527 528 529 530 531 532 533 534
            output = pad_constant_int(data)
            np_out = self._get_numpy_out(
                input_data, [pad_int] * 2,
                "constant",
                value=value,
                data_format="NCL")
            self.assertTrue(np.allclose(output.numpy(), np_out))

L
littletomatodonkey 已提交
535 536 537 538 539
            output = pad_circular(data)
            np_out = self._get_numpy_out(
                input_data, pad, "circular", value=value, data_format="NCL")
            self.assertTrue(np.allclose(output.numpy(), np_out))

L
littletomatodonkey 已提交
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568

class TestPad2dAPI(unittest.TestCase):
    def _get_numpy_out(self,
                       input_data,
                       pad,
                       mode,
                       value=0.0,
                       data_format="NCHW"):
        if data_format == "NCHW":
            pad = [
                (0, 0),
                (0, 0),
                (pad[2], pad[3]),
                (pad[0], pad[1]),
            ]
        else:
            pad = [
                (0, 0),
                (pad[2], pad[3]),
                (pad[0], pad[1]),
                (0, 0),
            ]

        if mode == "constant":
            out = np.pad(input_data, pad, mode=mode, constant_values=value)
        elif mode == "reflect":
            out = np.pad(input_data, pad, mode=mode)
        elif mode == "replicate":
            out = np.pad(input_data, pad, mode="edge")
L
littletomatodonkey 已提交
569 570
        elif mode == "circular":
            out = np.pad(input_data, pad, mode="wrap")
L
littletomatodonkey 已提交
571 572 573 574 575 576 577 578 579 580 581 582 583

        return out

    def setUp(self):
        self.places = [paddle.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(paddle.CUDAPlace(0))

    def test_class(self):
        paddle.disable_static()
        for place in self.places:
            input_shape = (3, 4, 5, 6)
            pad = [1, 2, 2, 1]
584
            pad_int = 1
L
littletomatodonkey 已提交
585 586 587
            value = 100
            input_data = np.random.rand(*input_shape).astype(np.float32)

L
littletomatodonkey 已提交
588 589 590
            pad_reflection = nn.Pad2D(padding=pad, mode="reflect")
            pad_replication = nn.Pad2D(padding=pad, mode="replicate")
            pad_constant = nn.Pad2D(padding=pad, mode="constant", value=value)
591 592
            pad_constant_int = nn.Pad2D(
                padding=pad_int, mode="constant", value=value)
L
littletomatodonkey 已提交
593
            pad_circular = nn.Pad2D(padding=pad, mode="circular")
L
littletomatodonkey 已提交
594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611

            data = paddle.to_tensor(input_data)

            output = pad_reflection(data)
            np_out = self._get_numpy_out(
                input_data, pad, "reflect", data_format="NCHW")
            self.assertTrue(np.allclose(output.numpy(), np_out))

            output = pad_replication(data)
            np_out = self._get_numpy_out(
                input_data, pad, "replicate", data_format="NCHW")
            self.assertTrue(np.allclose(output.numpy(), np_out))

            output = pad_constant(data)
            np_out = self._get_numpy_out(
                input_data, pad, "constant", value=value, data_format="NCHW")
            self.assertTrue(np.allclose(output.numpy(), np_out))

612 613 614 615 616 617 618 619
            output = pad_constant_int(data)
            np_out = self._get_numpy_out(
                input_data, [pad_int] * 4,
                "constant",
                value=value,
                data_format="NCHW")
            self.assertTrue(np.allclose(output.numpy(), np_out))

L
littletomatodonkey 已提交
620
            output = pad_circular(data)
L
littletomatodonkey 已提交
621
            np_out = self._get_numpy_out(
L
littletomatodonkey 已提交
622
                input_data, pad, "circular", data_format="NCHW")
L
littletomatodonkey 已提交
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
            self.assertTrue(np.allclose(output.numpy(), np_out))


class TestPad3dAPI(unittest.TestCase):
    def _get_numpy_out(self,
                       input_data,
                       pad,
                       mode,
                       value=0.0,
                       data_format="NCDHW"):
        if data_format == "NCDHW":
            pad = [
                (0, 0),
                (0, 0),
                (pad[4], pad[5]),
                (pad[2], pad[3]),
                (pad[0], pad[1]),
            ]
        else:
            pad = [
                (0, 0),
                (pad[4], pad[5]),
                (pad[2], pad[3]),
                (pad[0], pad[1]),
                (0, 0),
            ]

        if mode == "constant":
            out = np.pad(input_data, pad, mode=mode, constant_values=value)
        elif mode == "reflect":
            out = np.pad(input_data, pad, mode=mode)
        elif mode == "replicate":
            out = np.pad(input_data, pad, mode="edge")
L
littletomatodonkey 已提交
656 657
        elif mode == "circular":
            out = np.pad(input_data, pad, mode="wrap")
L
littletomatodonkey 已提交
658 659 660 661 662 663 664 665 666 667 668 669 670

        return out

    def setUp(self):
        self.places = [paddle.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(paddle.CUDAPlace(0))

    def test_class(self):
        paddle.disable_static()
        for place in self.places:
            input_shape = (3, 4, 5, 6, 7)
            pad = [1, 2, 2, 1, 1, 0]
671
            pad_int = 1
L
littletomatodonkey 已提交
672 673 674
            value = 100
            input_data = np.random.rand(*input_shape).astype(np.float32)

L
littletomatodonkey 已提交
675 676 677
            pad_reflection = nn.Pad3D(padding=pad, mode="reflect")
            pad_replication = nn.Pad3D(padding=pad, mode="replicate")
            pad_constant = nn.Pad3D(padding=pad, mode="constant", value=value)
678 679
            pad_constant_int = nn.Pad3D(
                padding=pad_int, mode="constant", value=value)
L
littletomatodonkey 已提交
680
            pad_circular = nn.Pad3D(padding=pad, mode="circular")
L
littletomatodonkey 已提交
681 682 683

            data = paddle.to_tensor(input_data)

L
littletomatodonkey 已提交
684 685 686 687 688
            output = pad_reflection(data)
            np_out = self._get_numpy_out(
                input_data, pad, "reflect", data_format="NCDHW")
            self.assertTrue(np.allclose(output.numpy(), np_out))

L
littletomatodonkey 已提交
689 690 691 692 693 694 695 696 697 698
            output = pad_replication(data)
            np_out = self._get_numpy_out(
                input_data, pad, "replicate", data_format="NCDHW")
            self.assertTrue(np.allclose(output.numpy(), np_out))

            output = pad_constant(data)
            np_out = self._get_numpy_out(
                input_data, pad, "constant", value=value, data_format="NCDHW")
            self.assertTrue(np.allclose(output.numpy(), np_out))

699 700 701 702 703 704 705 706
            output = pad_constant_int(data)
            np_out = self._get_numpy_out(
                input_data, [pad_int] * 6,
                "constant",
                value=value,
                data_format="NCDHW")
            self.assertTrue(np.allclose(output.numpy(), np_out))

L
littletomatodonkey 已提交
707 708 709 710 711
            output = pad_circular(data)
            np_out = self._get_numpy_out(
                input_data, pad, "circular", data_format="NCDHW")
            self.assertTrue(np.allclose(output.numpy(), np_out))

712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
    def test_pad_tensor(self):
        paddle.disable_static()
        for place in self.places:
            input_shape = (3, 4, 5, 6, 7)
            pad = [1, 2, 2, 1, 1, 0]
            pad_tensor = paddle.to_tensor(pad)
            input_data = np.random.rand(*input_shape).astype(np.float32)

            pad_reflection_ncdhw = nn.Pad3D(
                padding=pad_tensor, mode="reflect", data_format="NCDHW")
            pad_reflection_ndhwc = nn.Pad3D(
                padding=pad_tensor, mode="reflect", data_format="NDHWC")
            data = paddle.to_tensor(input_data)

            output = pad_reflection_ncdhw(data)
            np_out = self._get_numpy_out(
                input_data, pad, "reflect", data_format="NCDHW")
            self.assertTrue(np.allclose(output.numpy(), np_out))

            output = pad_reflection_ndhwc(data)
            np_out = self._get_numpy_out(
                input_data, pad, "reflect", data_format="NDHWC")
            self.assertTrue(np.allclose(output.numpy(), np_out))

L
littletomatodonkey 已提交
736 737

class TestPad3dOpError(unittest.TestCase):
738 739 740 741 742
    def setUp(self):
        self.places = [paddle.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(paddle.CUDAPlace(0))

L
littletomatodonkey 已提交
743 744 745 746
    def test_errors(self):
        def test_variable():
            input_shape = (1, 2, 3, 4, 5)
            data = np.random.rand(*input_shape).astype(np.float32)
747
            y = F.pad(x=data, pad=[1, 1, 1, 1, 1, 1], data_format="NCDHW")
L
littletomatodonkey 已提交
748 749 750 751

        def test_reflect_1():
            input_shape = (1, 2, 3, 4, 5)
            data = np.random.rand(*input_shape).astype(np.float32)
752 753 754 755 756 757
            x = paddle.to_tensor(data)
            y = F.pad(x,
                      pad=[5, 6, 1, 1, 1, 1],
                      value=1,
                      mode='reflect',
                      data_format="NCDHW")
L
littletomatodonkey 已提交
758 759 760 761

        def test_reflect_2():
            input_shape = (1, 2, 3, 4, 5)
            data = np.random.rand(*input_shape).astype(np.float32)
762 763 764 765 766 767
            x = paddle.to_tensor(data)
            y = F.pad(x,
                      pad=[1, 1, 4, 3, 1, 1],
                      value=1,
                      mode='reflect',
                      data_format="NCDHW")
L
littletomatodonkey 已提交
768 769 770 771

        def test_reflect_3():
            input_shape = (1, 2, 3, 4, 5)
            data = np.random.rand(*input_shape).astype(np.float32)
772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
            x = paddle.to_tensor(data)
            y = F.pad(x,
                      pad=[1, 1, 1, 1, 2, 3],
                      value=1,
                      mode='reflect',
                      data_format="NCDHW")

        def test_circular_1():
            input_shape = (1, 2, 0, 4, 5)
            data = np.random.rand(*input_shape).astype(np.float32)
            x = paddle.to_tensor(data)
            y = F.pad(x,
                      pad=[1, 1, 1, 1, 2, 3],
                      mode='circular',
                      data_format="NCDHW")
L
littletomatodonkey 已提交
787

788 789 790 791 792 793 794 795 796
        def test_replicate_1():
            input_shape = (1, 2, 0, 4, 5)
            data = np.random.rand(*input_shape).astype(np.float32)
            x = paddle.to_tensor(data)
            y = F.pad(x,
                      pad=[1, 1, 1, 1, 2, 3],
                      mode='replicate',
                      data_format="NCDHW")

797 798 799 800 801 802 803
        paddle.disable_static()
        for place in self.places:
            self.assertRaises(ValueError, test_variable)
            self.assertRaises(Exception, test_reflect_1)
            self.assertRaises(Exception, test_reflect_2)
            self.assertRaises(Exception, test_reflect_3)
            self.assertRaises(Exception, test_circular_1)
804
            self.assertRaises(Exception, test_replicate_1)
805
        paddle.enable_static()
L
littletomatodonkey 已提交
806 807


808 809 810 811 812 813 814
class TestPadDataformatError(unittest.TestCase):
    def test_errors(self):
        def test_ncl():
            input_shape = (1, 2, 3, 4)
            pad = paddle.to_tensor(np.array([2, 1, 2, 1]).astype('int32'))
            data = np.arange(
                np.prod(input_shape), dtype=np.float64).reshape(input_shape) + 1
L
littletomatodonkey 已提交
815
            my_pad = nn.Pad1D(padding=pad, mode="replicate", data_format="NCL")
816 817 818 819 820 821 822 823
            data = paddle.to_tensor(data)
            result = my_pad(data)

        def test_nchw():
            input_shape = (1, 2, 4)
            pad = paddle.to_tensor(np.array([2, 1, 2, 1]).astype('int32'))
            data = np.arange(
                np.prod(input_shape), dtype=np.float64).reshape(input_shape) + 1
L
littletomatodonkey 已提交
824
            my_pad = nn.Pad1D(padding=pad, mode="replicate", data_format="NCHW")
825 826 827 828 829 830 831 832
            data = paddle.to_tensor(data)
            result = my_pad(data)

        def test_ncdhw():
            input_shape = (1, 2, 3, 4)
            pad = paddle.to_tensor(np.array([2, 1, 2, 1]).astype('int32'))
            data = np.arange(
                np.prod(input_shape), dtype=np.float64).reshape(input_shape) + 1
L
littletomatodonkey 已提交
833 834
            my_pad = nn.Pad1D(
                padding=pad, mode="replicate", data_format="NCDHW")
835 836 837 838 839 840 841 842 843 844
            data = paddle.to_tensor(data)
            result = my_pad(data)

        self.assertRaises(AssertionError, test_ncl)

        self.assertRaises(AssertionError, test_nchw)

        self.assertRaises(AssertionError, test_ncdhw)


L
littletomatodonkey 已提交
845 846
if __name__ == '__main__':
    unittest.main()