loss_scaler.py 20.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
from paddle.fluid import core
from paddle.fluid.dygraph import to_variable
from paddle.fluid.framework import _varbase_creator, _dygraph_tracer, dygraph_only
from paddle.fluid.data_feeder import check_type
from ...wrapped_decorator import signature_safe_contextmanager, wrap_decorator
import warnings
import numpy as np
W
wanghuancoder 已提交
23
from paddle import _C_ops
24 25
from collections import defaultdict
from enum import Enum
26

27 28 29 30 31 32 33 34 35 36 37
__all__ = ['AmpScaler', 'OptimizerState']


class OptimizerState(Enum):
    INIT = 0
    UNSCALED = 1
    STEPPED = 2


def _refresh_optimizer_state():
    return {"state": OptimizerState.INIT}
38 39 40 41 42 43 44 45


class AmpScaler(object):
    """
    :api_attr: imperative

    AmpScaler is used for Auto-Mixed-Precision training/inferring in imperative
    mode. It controls the scaling of loss, helps avoiding numerical overflow.
46
    The object of this class has seventeen methods `scale()`, `unscale_()`, `minimize()` and `get`/`set` api of parameters.
47 48

    `scale()` is used to multiply the loss by a scale ratio.
49 50
    `unscale_()` is used to unscale the gradients of parameters, multiplies the gradients of parameters by 1/(scale ratio)
    `minimize()` is similar as `optimizer.minimize()`, performs parameters updating, and it will update the loss_scaling.
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106

    Commonly, it is used together with `amp_guard` to achieve Auto-Mixed-Precision in 
    imperative mode.

    Args:
        enable(bool, optional): Enable loss scaling or not. Default is True.
        init_loss_scaling (float, optional): The initial loss scaling factor. Default is 2**15.
        incr_ratio(float, optional): The multiplier to use when increasing the loss 
                        scaling. Default is 2.0.
        decr_ratio(float, optional): The less-than-one-multiplier to use when decreasing 
                        the loss scaling. Default is 0.5.
        incr_every_n_steps(int, optional): Increases loss scaling every n consecutive 
                                steps with finite gradients. Default is 1000.
        decr_every_n_nan_or_inf(int, optional): Decreases loss scaling every n 
                                    accumulated steps with nan or inf gradients. Default is 2.
        use_dynamic_loss_scaling(bool, optional): Whether to use dynamic loss scaling. If False, fixed loss_scaling is used. If True, the loss scaling is updated dynamicly. Default is True.
    Returns:
        An AmpScaler object.

    Examples:

     .. code-block:: python

        import numpy as np
        import paddle.fluid as fluid

        data = np.random.uniform(-1, 1, [10, 3, 32, 32]).astype('float32')
        with fluid.dygraph.guard():
            model = fluid.dygraph.Conv2D(3, 2, 3)
            optimizer = fluid.optimizer.SGDOptimizer(
                    learning_rate=0.01, parameter_list=model.parameters())
            scaler = fluid.dygraph.AmpScaler(init_loss_scaling=1024)
            data = fluid.dygraph.to_variable(data)
            with fluid.dygraph.amp_guard():
                conv = model(data)
                loss = fluid.layers.reduce_mean(conv)
                scaled = scaler.scale(loss)
                scaled.backward()
                scaler.minimize(optimizer, scaled)         
    """

    @dygraph_only
    def __init__(self,
                 enable=True,
                 init_loss_scaling=2.**15,
                 incr_ratio=2.0,
                 decr_ratio=0.5,
                 incr_every_n_steps=1000,
                 decr_every_n_nan_or_inf=1,
                 use_dynamic_loss_scaling=True):

        tracer = _dygraph_tracer()
        if not tracer:
            raise ValueError(
                "current_tracer is None, maybe it is not in imperative mode.")

107 108 109 110 111
        if enable and not (tracer._expected_place.is_gpu_place()
                           or tracer._expected_place.is_xpu_place()
                           or tracer._expected_place.is_mlu_place()
                           or tracer._expected_place.is_npu_place()
                           or tracer._expected_place.is_custom_place()):
112
            warnings.warn(
113
                'AmpScaler can only be enabled on CUDAPlace, XPUPlace, MLUPlace, NPUPlace and CustomPlace, current place is %s, so it makes no effect.'
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
                % tracer._expected_place)
            enable = False

        self._enable = enable

        if self._enable:
            assert incr_ratio > 1.0, "The incr_ratio must be > 1.0."
            assert decr_ratio < 1.0, "The decr_ratio must be < 1.0."

            self._init_loss_scaling = init_loss_scaling
            self._incr_ratio = incr_ratio
            self._decr_ratio = decr_ratio
            self._incr_every_n_steps = incr_every_n_steps
            self._decr_every_n_nan_or_inf = decr_every_n_nan_or_inf
            self._incr_count = 0
            self._decr_count = 0
            self._use_dynamic_loss_scaling = use_dynamic_loss_scaling

132
            self._found_inf = to_variable(np.array([0]).astype(np.bool_))
133
            self._temp_found_inf_fp16 = to_variable(
134
                np.array([0]).astype(np.bool_))
135
            self._temp_found_inf_fp32 = to_variable(
136
                np.array([0]).astype(np.bool_))
137 138 139
            self._scale = to_variable(
                np.array([self._init_loss_scaling]).astype(np.float32))
            self._cache_founf_inf = None
140
            self._optimizer_states = defaultdict(_refresh_optimizer_state)
141 142 143 144 145 146 147 148 149 150 151 152

    def scale(self, var):
        """
        Multiplies a variable(Tensor) by the scale factor and returns scaled outputs.  
        If this instance of :class:`AmpScaler` is not enabled, output are returned unmodified.

        Args:
            var (Variable):  The variable to scale.
        Returns:
            The scaled variable or original variable.
        
        Examples:
153

154 155
            .. code-block:: python

156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
                import numpy as np
                import paddle.fluid as fluid

                data = np.random.uniform(-1, 1, [10, 3, 32, 32]).astype('float32')
                with fluid.dygraph.guard():
                    model = fluid.dygraph.Conv2D(3, 2, 3)
                    optimizer = fluid.optimizer.SGDOptimizer(
                            learning_rate=0.01, parameter_list=model.parameters())
                    scaler = fluid.dygraph.AmpScaler(init_loss_scaling=1024)
                    data = fluid.dygraph.to_variable(data)
                    with fluid.dygraph.amp_guard():
                        conv = model(data)
                        loss = fluid.layers.reduce_mean(conv)
                        scaled = scaler.scale(loss)
                        scaled.backward()
                        scaler.minimize(optimizer, scaled) 
172 173 174 175 176 177 178 179 180 181 182 183 184
        """
        check_type(var, "var", core.VarBase, 'AmpScaler.scale()')

        if not self._enable:
            return var

        return var * self._scale

    def minimize(self, optimizer, *args, **kwargs):
        """
        This function is similar as `Optimizer.minimize()`, which performs parameters updating.
        
        If the scaled gradients of parameters contains NAN or INF, the parameters updating is skipped.
185
        Otherwise, if `unscale_()` has not been called, it first unscales the scaled gradients of parameters, then updates the parameters.
186 187 188 189 190 191 192 193 194

        Finally, the loss scaling ratio is updated.

        Args:
            optimizer(Optimizer):  The optimizer used to update parameters.
            args:  Arguments, which will be forward to `optimizer.minimize()`.
            kwargs: Keyword arguments, which will be forward to `Optimizer.minimize()`.

        Examples:
195

196 197
            .. code-block:: python

198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
                import numpy as np
                import paddle.fluid as fluid

                data = np.random.uniform(-1, 1, [10, 3, 32, 32]).astype('float32')
                with fluid.dygraph.guard():
                    model = fluid.dygraph.Conv2D(3, 2, 3)
                    optimizer = fluid.optimizer.SGDOptimizer(
                            learning_rate=0.01, parameter_list=model.parameters())
                    scaler = fluid.dygraph.AmpScaler(init_loss_scaling=1024)
                    data = fluid.dygraph.to_variable(data)
                    with fluid.dygraph.amp_guard():
                        conv = model(data)
                        loss = fluid.layers.reduce_mean(conv)
                        scaled = scaler.scale(loss)
                        scaled.backward()
                        scaler.minimize(optimizer, scaled) 
214 215 216 217
        """
        if not self._enable:
            return optimizer.minimize(*args, **kwargs)

218 219
        optimizer_state = self._optimizer_states[id(optimizer)]

220
        #  unscale the grad
221 222
        if optimizer_state["state"] is OptimizerState.INIT:
            self._unscale(optimizer)
223 224 225 226 227 228 229 230 231 232 233 234 235

        optimize_ops, params_grads = (None, None)

        if self._found_inf:
            self._cache_founf_inf = True
        else:
            optimize_ops, params_grads = optimizer.minimize(*args, **kwargs)
            self._cache_founf_inf = False

        if self._use_dynamic_loss_scaling:
            # uopdate the scale
            self._update()

236 237
        self._optimizer_states = defaultdict(_refresh_optimizer_state)

238 239 240
        return optimize_ops, params_grads

    def _unscale(self, optimizer):
241 242 243 244 245 246 247 248
        """
        Unscale the gradients of parameters, multiplies the gradients of parameters by 1/(loss scaling ratio).  
        If this instance of :class:`GradScaler` is not enabled, output are returned unmodified.
        Args:
            optimizer(Optimizer):  The optimizer used to update parameters.
        Returns:
            The unscaled parameters or original parameters.
        """
249 250
        if not self._enable:
            return
251

252 253 254 255 256 257 258 259 260
        optimizer_state = self._optimizer_states[id(optimizer)]

        if optimizer_state["state"] is OptimizerState.UNSCALED:
            raise RuntimeError(
                "unscale_() has already been called on this optimizer since the last update()."
            )
        elif optimizer_state["state"] is OptimizerState.STEPPED:
            raise RuntimeError("unscale_() is being called after step().")

261 262 263
        if getattr(optimizer, '_param_groups', None) and isinstance(
                optimizer._param_groups[0], dict):
            param_grads = []
264 265
            param_grads_fp16 = []
            param_grads_fp32 = []
266 267 268 269
            for group in optimizer._param_groups:
                for param in group['params']:
                    if param._grad_ivar() is not None:
                        param_grads.append(param._grad_ivar())
270 271 272 273 274
                        if param._grad_ivar(
                        ).dtype == core.VarDesc.VarType.FP16:
                            param_grads_fp16.append(param._grad_ivar())
                        else:
                            param_grads_fp32.append(param._grad_ivar())
275 276 277 278 279
        else:
            param_grads = [
                param._grad_ivar() for param in optimizer._parameter_list
                if param._grad_ivar() is not None
            ]
280
            param_grads_fp16 = [
281 282
                param for param in param_grads
                if param.dtype == core.VarDesc.VarType.FP16
283 284
            ]
            param_grads_fp32 = [
285 286
                param for param in param_grads
                if param.dtype == core.VarDesc.VarType.FP32
287
            ]
F
furnace 已提交
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
        if core.is_compiled_with_npu():
            float_status = _C_ops.alloc_float_status()
            _C_ops.clear_float_status(float_status, float_status)

            if len(param_grads_fp16):
                _C_ops.check_finite_and_unscale(param_grads_fp16, self._scale,
                                                float_status, param_grads_fp16,
                                                self._temp_found_inf_fp16)
            if len(param_grads_fp32):
                _C_ops.check_finite_and_unscale(param_grads_fp32, self._scale,
                                                float_status, param_grads_fp32,
                                                self._temp_found_inf_fp32)
        else:
            if len(param_grads_fp16):
                _C_ops.check_finite_and_unscale(param_grads_fp16, self._scale,
                                                param_grads_fp16,
                                                self._temp_found_inf_fp16)
            if len(param_grads_fp32):
                _C_ops.check_finite_and_unscale(param_grads_fp32, self._scale,
                                                param_grads_fp32,
                                                self._temp_found_inf_fp32)

310
        self._found_inf = self._temp_found_inf_fp16 or self._temp_found_inf_fp32
311

312 313
        optimizer_state["state"] = OptimizerState.UNSCALED

314 315 316 317 318 319 320 321 322 323 324 325
    def _update(self):
        """
        Updates the loss_scaling.
        """
        if not self._enable:
            return

        if self._cache_founf_inf:
            self._incr_count = 0
            self._decr_count = self._decr_count + 1
            if self._decr_count == self._decr_every_n_nan_or_inf:
                print(
326 327 328
                    'Found inf or nan, current scale is: {}, decrease to: {}*{}'
                    .format(float(self._scale), float(self._scale),
                            float(self._decr_ratio)))
329 330 331 332 333 334 335 336 337 338
                self._scale = self._scale * self._decr_ratio
                self._decr_count = 0
        else:
            self._decr_count = 0
            self._incr_count = self._incr_count + 1
            if self._incr_count == self._incr_every_n_steps:
                self._scale = self._scale * self._incr_ratio
                self._incr_count = 0

        return
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450

    def is_enable(self):
        """
        Enable loss scaling or not.

        Returns:
            bool: enable loss scaling return True else return False.
        """
        return self._enable

    def is_use_dynamic_loss_scaling(self):
        """
        Whether to use dynamic loss scaling.

        Returns:
            bool: if fixed loss_scaling is used return False, if the loss scaling is updated dynamicly return true.
        """
        return self._use_dynamic_loss_scaling

    def get_init_loss_scaling(self):
        """
        Return the initial loss scaling factor.

        Reurns:
            float:  the initial loss scaling factor.
        """
        return self._init_loss_scaling

    def set_init_loss_scaling(self, new_init_loss_scaling):
        """
        Set the initial loss scaling factor by `new_init_loss_scaling`.

        Args:
            new_init_loss_scaling(int):  The new_init_loss_scaling used to update initial loss scaling factor.s
        """
        self._init_loss_scaling = new_init_loss_scaling
        self._scale = to_variable(
            np.array([self._init_loss_scaling]).astype(np.float32))

    def get_incr_ratio(self):
        """
        Return the multiplier to use when increasing the loss scaling.

        Reurns:
            float:  the multiplier to use when increasing the loss scaling.
        """
        return self._incr_ratio

    def set_incr_ratio(self, new_incr_ratio):
        """
        Set the multiplier to use when increasing the loss scaling by `new_incr_ratio`, `new_incr_ratio` should > 1.0.

        Args:
            new_incr_ratio(float):  The new_incr_ratio used to update the multiplier to use when increasing the loss scaling.
        """
        assert new_incr_ratio > 1.0, "The new_incr_ratio must be > 1.0."
        self._incr_ratio = new_incr_ratio

    def get_decr_ratio(self):
        """
        Get the less-than-one-multiplier to use when decreasing the loss scaling.

        Reurns:
            float:  the less-than-one-multiplier to use when decreasing the loss scaling.
        """
        return self._decr_ratio

    def set_decr_ratio(self, new_decr_ratio):
        """
        Set the less-than-one-multiplier to use when decreasing the loss scaling by `new_incr_ratio`, `new_decr_ratio` should < 1.0.

        Args:
            new_decr_ratio(float):  The new_decr_ratio used to update the less-than-one-multiplier to use when decreasing the loss scaling.
        """
        assert new_decr_ratio < 1.0, "The new_decr_ratio must be < 1.0."
        self._decr_ratio = new_decr_ratio

    def get_incr_every_n_steps(self):
        """
        Return the num `n`, `n` represent increases loss scaling every `n` consecutive steps with finite gradients.

        Reurns:
            int:  the num `n`, `n` represent increases loss scaling every `n` consecutive steps with finite gradients.
        """
        return self._incr_every_n_steps

    def set_incr_every_n_steps(self, new_incr_every_n_steps):
        """
        Set the num `n` by `new_incr_every_n_steps`, `n` represent increases loss scaling every `n` consecutive steps with finite gradients.

        Args:
            new_incr_every_n_steps(int):  The new_incr_every_n_steps used to update the num `n`, `n` represent increases loss scaling every `n` consecutive steps with finite gradients.
        """
        self._incr_every_n_steps = new_incr_every_n_steps

    def get_decr_every_n_nan_or_inf(self):
        """
        Return the num `n`, `n` represent decreases loss scaling every `n` accumulated steps with nan or inf gradients.

        Reurns:
            int:  the num `n`, `n` represent decreases loss scaling every `n` accumulated steps with nan or inf gradients.
        """
        return self._decr_every_n_nan_or_inf

    def set_decr_every_n_nan_or_inf(self, new_decr_every_n_nan_or_inf):
        """
        Set the num `n` by `new_decr_every_n_nan_or_inf`, `n` represent decreases loss scaling every `n` accumulated steps with nan or inf gradients.

        Args:
            new_decr_every_n_nan_or_inf(int):  The new_decr_every_n_nan_or_inf used to update the num `n`, `n` represent decreases loss scaling every `n` accumulated steps with nan or inf gradients.
        """
        self._decr_every_n_nan_or_inf = new_decr_every_n_nan_or_inf
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502

    def state_dict(self):
        """
        Returns the state of the scaler as a `dict`, If this instance is not enabled, returns an empty dict.

        Reurns:
            A dict of scaler includes:
            scale (tensor): The loss scaling factor.
            incr_ratio(float): The multiplier to use when increasing the loss scaling.
            decr_ratio(float): The less-than-one-multiplier to use when decreasing the loss scaling.
            incr_every_n_steps(int): Increases loss scaling every n consecutive steps with finite gradients.
            decr_every_n_nan_or_inf(int): Decreases loss scaling every n accumulated steps with nan or inf gradients.
            incr_count(int): The number of recent consecutive unskipped steps.
            decr_count(int): The number of recent consecutive skipped steps.
            use_dynamic_loss_scaling(bool): Whether to use dynamic loss scaling. If False, fixed loss_scaling is used. If True, the loss scaling is updated dynamicly. Default is True.
        """
        return {
            "scale": self._scale.numpy(),
            "incr_ratio": self._incr_ratio,
            "decr_ratio": self._decr_ratio,
            "incr_every_n_steps": self._incr_every_n_steps,
            "decr_every_n_nan_or_inf": self._decr_every_n_nan_or_inf,
            "incr_count": self._incr_count,
            "decr_count": self._decr_count,
            "use_dynamic_loss_scaling": self._use_dynamic_loss_scaling
        } if self._enable else {}

    def load_state_dict(self, state_dict):
        """
        Loads the scaler state.
        
        Args:
           state_dict(dict): scaler state.  Should be an object returned from a call to `AmpScaler.state_dict()`.
        """
        if not self._enable:
            return

        if len(state_dict) == 0:
            raise RuntimeError(
                "The input state dict is empty, possibly because it was saved "
                "from a disabled instance of GradScaler.")

        self._init_loss_scaling = state_dict["scale"][0]
        self._scale = to_variable(
            np.array([self._init_loss_scaling]).astype(np.float32))
        self._incr_ratio = state_dict["incr_ratio"]
        self._decr_ratio = state_dict["decr_ratio"]
        self._incr_every_n_steps = state_dict["incr_every_n_steps"]
        self._decr_every_n_nan_or_inf = state_dict["decr_every_n_nan_or_inf"]
        self._incr_count = state_dict["incr_count"]
        self._decr_count = state_dict["decr_count"]
        self._use_dynamic_loss_scaling = state_dict["use_dynamic_loss_scaling"]