MKLDNNTester.cpp 18.3 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15 16 17
#include "MKLDNNTester.h"
#include "paddle/gserver/layers/MKLDNNBase.h"
#include "paddle/gserver/layers/MKLDNNLayer.h"
18
#include "paddle/trainer/Trainer.h"
T
tensor-tang 已提交
19 20 21 22

namespace paddle {

// init data layer and test layer of both dnn and reference
23
void MKLDNNTester::reset(const TestConfig& dnn,
T
tensor-tang 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
                         const TestConfig& ref,
                         size_t batchSize) {
  const bool trans = false;
  const bool useGpu = false;

  // clear
  configs_.clear();
  layerNames_.clear();
  dataLayers_.clear();
  datas_.clear();
  layerMaps_.clear();
  parameters_.clear();
  testLayers_.clear();

  // resize
  configs_.resize(NUM);
  layerNames_.resize(NUM);
  dataLayers_.resize(NUM);
  datas_.resize(NUM);
  layerMaps_.resize(NUM);
  parameters_.resize(NUM);
  testLayers_.resize(NUM);

  // reset configs and layer names
  configs_[DNN] = dnn;
  configs_[REF] = ref;
  layerNames_[DNN] = "mkldnn";     // the first is mkldnn layer
  layerNames_[REF] = "reference";  // second is reference layer

  // reset others
  for (size_t i = 0; i < NUM; ++i) {
    configs_[i].layerConfig.set_name(layerNames_[i]);
    initDataLayer(configs_[i],
                  &(dataLayers_[i]),
                  &(datas_[i]),
                  &(layerMaps_[i]),
                  layerNames_[i],
                  batchSize,
                  trans,
                  useGpu);
    initTestLayer(
        configs_[i], &(layerMaps_[i]), &(parameters_[i]), &(testLayers_[i]));
  }
  refLayer_ = testLayers_[REF];
68
  dnnLayer_ = testLayers_[DNN];
T
tensor-tang 已提交
69 70 71
  EXPECT_EQ(dataLayers_[DNN].size(), dataLayers_[REF].size());
  EXPECT_EQ(parameters_[DNN].size(), parameters_[REF].size());
  setInputImgSize();
72 73 74 75 76 77 78

  // for comparison with Paddle reference results,
  // need manually add cpu device output for test
  MKLDNNLayerPtr dnnLayer = std::dynamic_pointer_cast<MKLDNNLayer>(dnnLayer_);
  if (dnnLayer) {
    dnnLayer->addOutputArgument(CPU_DEVICE);
  }
T
tensor-tang 已提交
79 80
}

81
void MKLDNNTester::setInputImgSize() {
T
tensor-tang 已提交
82 83 84 85 86 87 88 89 90 91
  for (size_t n = 0; n < dataLayers_.size(); ++n) {
    for (size_t i = 0; i < dataLayers_[n].size(); ++i) {
      // TODO(TJ): fix me when concat and elewise ready
      dataLayers_[n][i]->getOutput().setFrameHeight(ih_);
      dataLayers_[n][i]->getOutput().setFrameWidth(iw_);
    }
  }
}

// init randome parameters of ref, and copy to mkldnn
92
void MKLDNNTester::randomWgtDatas() {
T
tensor-tang 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105
  EXPECT_EQ(parameters_[DNN].size(), parameters_[REF].size());
  for (size_t i = 0; i < parameters_[REF].size(); ++i) {
    const VectorPtr& dnnValue = parameters_[DNN][i]->getBuf(PARAMETER_VALUE);
    const VectorPtr& refValue = parameters_[REF][i]->getBuf(PARAMETER_VALUE);
    parameters_[REF][i]->randomize();
    dnnValue->copyFrom(*refValue);

    VLOG(lvl_) << "Random weight data " << parameters_[DNN][i]->getName();
    printVector(dnnValue);
  }
}

// random botdata of ref layer and copy same to mkldnn
106
void MKLDNNTester::randomBotDatas() {
T
tensor-tang 已提交
107 108 109 110 111 112 113 114 115 116
  CHECK_EQ(dataLayers_.size(), NUM);
  for (size_t i = 0; i < dataLayers_[DNN].size(); ++i) {
    dataLayers_[REF][i]->getOutputValue()->randomizeUniform();
    dataLayers_[DNN][i]->getOutputValue()->copyFrom(
        *(dataLayers_[REF][i]->getOutputValue()));
    VLOG(lvl_) << "Input " << i << " data:";
    printMatrix(dataLayers_[REF][i]->getOutputValue());
  }
}

117
void MKLDNNTester::randomTopDiffs() {
T
tensor-tang 已提交
118
  refLayer_->getOutputGrad()->randomizeUniform();
119 120
  dnnLayer_->getOutput(CPU_DEVICE)
      .grad->copyFrom(*(refLayer_->getOutputGrad()));
121
  VLOG(lvl_) << "Random Backward Input, TopDiff: ";
T
tensor-tang 已提交
122 123 124
  printMatrix(refLayer_->getOutputGrad());
}

125
void MKLDNNTester::checkForward() {
T
tensor-tang 已提交
126
  VLOG(MKLDNN_ALL) << "Check Forward";
127
  printTopDatas();
128 129
  double delta =
      compareMatrix(dnnLayer_->getOutputValue(), refLayer_->getOutputValue());
T
tensor-tang 已提交
130 131 132
  EXPECT_LE(fabs(delta), eps_);
}

133
void MKLDNNTester::checkBackwardData() {
134
  VLOG(MKLDNN_ALL) << "Check Backward Data";
T
tensor-tang 已提交
135 136
  // TODO(TJ): uncomment me when batch norm ready
  // const bool isBN = dnnLayer_->getType() == "mkldnn_batch_norm";
T
tensor-tang 已提交
137 138 139 140 141 142 143 144 145 146
  for (size_t i = 0; i < dataLayers_[DNN].size(); ++i) {
    const MatrixPtr& dnnDiff = dataLayers_[DNN][i]->getOutputGrad();
    const MatrixPtr& refDiff = dataLayers_[REF][i]->getOutputGrad();
    VLOG(lvl_) << "Mkldnn Backward Output BotDiff " << i;
    printMatrix(dnnDiff);
    VLOG(lvl_) << "Reference Backward Output BotDiff " << i;
    printMatrix(refDiff);

    double delta = compareMatrix(dnnDiff, refDiff);
    EXPECT_LE(fabs(delta), eps_);
T
tensor-tang 已提交
147 148 149 150 151
    // TODO(TJ): uncomment me when batch norm ready
    // if (isBN) {
    //  // the other two inputs in batch norm are for moving mean and var
    //  break;
    // }
T
tensor-tang 已提交
152 153 154
  }
}

155
void MKLDNNTester::checkBackwardWgts() {
156
  VLOG(MKLDNN_ALL) << "Check Backward Weight";
T
tensor-tang 已提交
157 158 159 160
  CHECK_EQ(parameters_[DNN].size(), parameters_[REF].size());
  vector<VectorPtr> dnnWgts;  // used to temply save mkldnn weights
  saveWgt(parameters_[DNN], dnnWgts);

161 162 163 164
  MKLDNNLayerPtr dnnLayer = std::dynamic_pointer_cast<MKLDNNLayer>(dnnLayer_);
  if (dnnLayer) {
    dnnLayer->convertWeightsToPaddle();
  }
T
tensor-tang 已提交
165 166 167 168 169 170 171 172 173 174 175 176
  for (size_t i = 0; i < parameters_[DNN].size(); ++i) {
    const VectorPtr& dnn = parameters_[DNN][i]->getBuf(PARAMETER_VALUE);
    const VectorPtr& ref = parameters_[REF][i]->getBuf(PARAMETER_VALUE);
    VLOG(lvl_) << "Mkldnn Output weight " << parameters_[DNN][i]->getName();
    printVector(dnn);
    VLOG(lvl_) << "Reference Output weight " << parameters_[REF][i]->getName();
    printVector(ref);

    double delta = compareVector(dnn, ref);
    EXPECT_LE(fabs(delta), eps_);
  }

T
tensor-tang 已提交
177
  VLOG(MKLDNN_ALL) << "Restore dnn weights before comapre";
T
tensor-tang 已提交
178 179 180
  restoreWgt(dnnWgts, parameters_[DNN]);
}

181
void MKLDNNTester::saveWgt(const vector<ParameterPtr>& from,
T
tensor-tang 已提交
182 183 184 185 186 187 188 189 190 191
                           vector<VectorPtr>& to) {
  const bool useGpu = false;
  to.resize(from.size());
  for (size_t i = 0; i < to.size(); ++i) {
    const VectorPtr& wgt = from[i]->getBuf(PARAMETER_VALUE);
    to[i] = Vector::create(wgt->getSize(), useGpu);
    to[i]->copyFrom(*wgt);
  }
}

192
void MKLDNNTester::restoreWgt(const vector<VectorPtr>& from,
T
tensor-tang 已提交
193 194 195 196 197 198 199 200 201
                              vector<ParameterPtr>& to) {
  CHECK_EQ(from.size(), to.size());
  for (size_t i = 0; i < from.size(); ++i) {
    const VectorPtr& wgt = to[i]->getBuf(PARAMETER_VALUE);
    wgt->copyFrom(*from[i]);
  }
}

// clear parameters grad
202 203
void MKLDNNTester::clearWgtDiffs(size_t id) {
  CHECK_LE(id, parameters_.size());
T
tensor-tang 已提交
204
  for (size_t n = 0; n < parameters_.size(); ++n) {
205 206 207 208 209 210
    if (id == n || id == parameters_.size()) {
      for (size_t i = 0; i < parameters_[n].size(); ++i) {
        const VectorPtr& grad = parameters_[n][i]->getBuf(PARAMETER_GRADIENT);
        if (grad) {
          grad->zeroMem();
        }
T
tensor-tang 已提交
211 212 213 214 215
      }
    }
  }
}

216 217
void MKLDNNTester::clearBotDiffs(size_t id) {
  CHECK_LE(id, dataLayers_.size());
T
tensor-tang 已提交
218
  for (size_t n = 0; n < dataLayers_.size(); ++n) {
219 220 221 222 223
    if (id == n || id == dataLayers_.size()) {
      // clear inputs layers of this specific layer
      for (size_t i = 0; i < dataLayers_[n].size(); ++i) {
        dataLayers_[n][i]->getOutputGrad()->zeroMem();
      }
T
tensor-tang 已提交
224 225 226 227
    }
  }
}

228 229
void MKLDNNTester::clearTopDatas(size_t id) {
  CHECK_LE(id, testLayers_.size());
T
tensor-tang 已提交
230
  for (size_t i = 0; i < testLayers_.size(); ++i) {
231 232 233
    if (id == i || id == testLayers_.size()) {
      testLayers_[i]->getOutputValue()->zeroMem();
    }
T
tensor-tang 已提交
234 235 236
  }
}

237
void MKLDNNTester::printTopDatas() {
T
tensor-tang 已提交
238 239 240 241 242 243 244 245 246 247
  if (!log_) {
    return;
  }

  for (int n = 0; n < NUM; ++n) {
    VLOG(lvl_) << testLayers_[n]->getType() << " forward output TopData: ";
    printMatrix(testLayers_[n]->getOutputValue());
  }
}

248
void MKLDNNTester::printMatrix(const MatrixPtr& m) {
T
tensor-tang 已提交
249 250 251
  if (!log_) {
    return;
  }
T
tensor-tang 已提交
252 253 254 255

  std::ostringstream ostr;
  m->print(ostr);
  VLOG(lvl_) << std::endl << ostr.str();
T
tensor-tang 已提交
256 257
}

258
void MKLDNNTester::printVector(const VectorPtr& v) {
T
tensor-tang 已提交
259 260 261 262
  if (!log_) {
    return;
  }

T
tensor-tang 已提交
263 264 265
  std::ostringstream ostr;
  v->print(ostr, v->getSize());
  VLOG(lvl_) << std::endl << ostr.str();
T
tensor-tang 已提交
266 267
}

268
double MKLDNNTester::getDelta(const real* d1,
T
tensor-tang 已提交
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
                              const real* d2,
                              size_t len,
                              const float failRate,
                              const float thres) {
  double delta = 0, sum = 0;
  int failCnt = 0;
  const double eps = 1e-5;
  double maxOut = 0;
  for (size_t i = 0; i < len; ++i) {
    double ref = fabs(d2[i]);
    double diff = fabs(d1[i] - d2[i]);
    delta += diff;
    sum += ref;
    if (ref > eps && fabs(d1[i]) > eps && diff / ref > thres) {
      maxOut = std::max(maxOut, diff / ref);
      failCnt++;
    }
  }
  EXPECT_TRUE(std::isnormal(sum));
  EXPECT_FALSE(std::isinf(sum));
  EXPECT_FALSE(std::isnan(delta));
T
tensor-tang 已提交
290 291
  VLOG(MKLDNN_ALL) << "reference avg data: " << sum / len
                   << ", delta: " << delta / sum << ", failCnt:" << failCnt;
T
tensor-tang 已提交
292 293 294
  return (failCnt / (float)len) > failRate ? maxOut : delta / sum;
}

295
double MKLDNNTester::compareMatrix(const MatrixPtr& m1, const MatrixPtr& m2) {
T
tensor-tang 已提交
296 297 298 299
  CHECK_EQ(m1->getElementCnt(), m2->getElementCnt());
  return getDelta(m1->getData(), m2->getData(), m1->getElementCnt());
}

300
double MKLDNNTester::compareVector(const VectorPtr& v1, const VectorPtr& v2) {
T
tensor-tang 已提交
301 302 303 304
  CHECK_EQ(v1->getSize(), v2->getSize());
  return getDelta(v1->getData(), v2->getData(), v1->getSize());
}

305
void MKLDNNTester::runOnce() {
T
tensor-tang 已提交
306 307 308 309 310 311 312
  // test forward
  randomBotDatas();
  dnnLayer_->forward(PASS_TRAIN);
  refLayer_->forward(PASS_TRAIN);
  checkForward();

  // test backward
313 314 315 316 317 318
  // simple updater
  UpdateCallback updateCallback = [](Parameter* para) {
    auto& grad = para->getBuf(PARAMETER_GRADIENT);
    auto& value = para->getBuf(PARAMETER_VALUE);
    real lr = 1e-3;
    value->add(*grad, lr);
319
    grad->zeroMem();
320
  };
T
tensor-tang 已提交
321
  randomTopDiffs();
322 323
  dnnLayer_->backward(updateCallback);
  refLayer_->backward(updateCallback);
T
tensor-tang 已提交
324 325 326 327 328
  checkBackwardData();
  checkBackwardWgts();

  // clear buffers
  // ref code will addto the diff, dnn code will writeto it
329
  // and clearTopDatas(REF) should be coverd by ref layers
T
tensor-tang 已提交
330
  clearBotDiffs(REF);
331
  clearWgtDiffs(REF);
332 333 334 335
  // it is necessary to clear bottom diffs when only activation is dnn type
  if (configs_[DNN].layerConfig.active_type().compare(0, 7, "mkldnn_") == 0) {
    clearBotDiffs(DNN);
  }
T
tensor-tang 已提交
336 337
}

338
void MKLDNNTester::run(const TestConfig& dnn,
T
tensor-tang 已提交
339 340 341 342 343 344 345 346
                       const TestConfig& ref,
                       size_t batchSize,
                       size_t inputImgH,
                       size_t inputImgW,
                       size_t iter,
                       float epsilon,
                       bool log,
                       int level) {
347 348 349 350 351 352 353 354 355 356 357 358 359
  CHECK(dnn.layerConfig.type().compare(0, 7, "mkldnn_") == 0 ||
        dnn.layerConfig.active_type().compare(0, 7, "mkldnn_") == 0)
      << "should be MKLDNN layer or MKLDNN activation";
  if (dnn.layerConfig.type() == ref.layerConfig.type()) {
    VLOG(MKLDNN_TESTS) << "Test MKLDNN functionality: "
                       << dnn.layerConfig.active_type() << " vs "
                       << ref.layerConfig.active_type();
  } else {
    VLOG(MKLDNN_TESTS) << "Test MKLDNN functionality: "
                       << dnn.layerConfig.type() << " vs "
                       << ref.layerConfig.type();
  }

T
tensor-tang 已提交
360 361 362 363 364 365 366
  ih_ = inputImgH;
  iw_ = inputImgW;
  iter_ = iter;
  eps_ = epsilon;
  log_ = log;
  lvl_ = level;

T
tensor-tang 已提交
367
  // Firstly test mkldnn init from PARAM_FORMAT_ORIGINAL weight
T
tensor-tang 已提交
368
  reset(dnn, ref, batchSize);
T
tensor-tang 已提交
369 370 371
  randomWgtDatas();
  clearWgtDiffs();
  clearBotDiffs();
T
tensor-tang 已提交
372
  for (size_t i = 0; i < iter_; ++i) {
T
tensor-tang 已提交
373
    VLOG(MKLDNN_TESTS) << "Check Iteration " << i;
T
tensor-tang 已提交
374 375
    runOnce();
  }
T
tensor-tang 已提交
376

T
tensor-tang 已提交
377 378 379 380 381
  if (parameters_[DNN].empty()) {
    // has no paramters
    return;
  }

T
tensor-tang 已提交
382 383 384 385
  // After run some iterations, the mkldnn weight has been stored in dnnLayer
  // and we can also get the mkldnn weight parameter header format.
  // Weight parameter should always be index 0 (and bias index 1).
  // TODO(TJ): should also consider mean and var format when batchnorm ready
T
tensor-tang 已提交
386 387 388 389 390 391 392
  int dnnWgtFmt = parameters_[DNN][0]->getHeaderFormat();
  int refWgtFmt = parameters_[REF][0]->getHeaderFormat();
  if (dnnWgtFmt == refWgtFmt) {
    // weight format are equal, so no need check more
    return;
  }

T
tensor-tang 已提交
393
  // then save the weights and restart again
T
tensor-tang 已提交
394 395 396 397
  vector<VectorPtr> dnnWgts, refWgts;
  CHECK_EQ(parameters_[DNN].size(), parameters_[REF].size());
  saveWgt(parameters_[DNN], dnnWgts);
  saveWgt(parameters_[REF], refWgts);
T
tensor-tang 已提交
398

T
tensor-tang 已提交
399
  // restart again with dnn weight format
T
tensor-tang 已提交
400
  reset(dnn, ref, batchSize);
T
tensor-tang 已提交
401 402
  // TODO(TJ): should also considerate mean and var format when batchnorm ready
  parameters_[DNN][0]->setHeaderFormat(dnnWgtFmt);
T
tensor-tang 已提交
403

T
tensor-tang 已提交
404 405 406 407 408
  // restore wgt
  restoreWgt(dnnWgts, parameters_[DNN]);
  restoreWgt(refWgts, parameters_[REF]);
  clearWgtDiffs();
  clearBotDiffs();
T
tensor-tang 已提交
409

T
tensor-tang 已提交
410
  for (size_t i = 0; i < iter_; ++i) {
T
tensor-tang 已提交
411
    VLOG(MKLDNN_TESTS) << "Check Iteration " << i;
T
tensor-tang 已提交
412 413 414 415
    runOnce();
  }
}

416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
void MKLDNNTester::initArgument(DataIn& data,
                                const std::string& configPath,
                                const size_t iter) {
  TrainerConfigHelper config(configPath);
  size_t batchSize = config.getOptConfig().batch_size();
  data.inArgs.resize(iter);
  data.outGrads.resize(iter);
  data.paraValues.clear();
  for (const auto& layer_name : config.getModelConfig().input_layer_names()) {
    auto layer_config = std::find_if(config.getModelConfig().layers().begin(),
                                     config.getModelConfig().layers().end(),
                                     [=](const LayerConfig& layer_config) {
                                       return layer_config.name() == layer_name;
                                     });
    CHECK(layer_config != config.getModelConfig().layers().end());

    size_t layerSize = layer_config->size();
    for (size_t i = 0; i < iter; ++i) {
      Argument arg;
      arg.value = Matrix::create(batchSize, layerSize, false, false);
      arg.grad = Matrix::create(batchSize, layerSize, false, false);
      arg.value->randomizeUniform();
      arg.value->add(-0.5);
      arg.value->sigmoid(*arg.value);
      arg.grad->zeroMem();
      arg.ids = VectorT<int>::create(batchSize, false);
      arg.ids->rand(layerSize);
      generateSequenceStartPositions(batchSize, arg.sequenceStartPositions);
      data.inArgs[i].push_back(arg);
    }
  }

  for (const auto& layer_name : config.getModelConfig().output_layer_names()) {
    auto layer_config = std::find_if(config.getModelConfig().layers().begin(),
                                     config.getModelConfig().layers().end(),
                                     [=](const LayerConfig& layer_config) {
                                       return layer_config.name() == layer_name;
                                     });
    CHECK(layer_config != config.getModelConfig().layers().end());

    size_t layerSize = layer_config->size();
    for (size_t i = 0; i < iter; ++i) {
      MatrixPtr grad = Matrix::create(batchSize, layerSize, false, false);
      grad->randomizeUniform();
      data.outGrads[i].push_back(grad);
    }
  }

  for (const auto& para_config : config.getModelConfig().parameters()) {
    VectorPtr value = Vector::create(para_config.size(), false);
    value->randnorm(0, 2);
    data.paraValues.push_back(value);
  }
}

void MKLDNNTester::getOutResult(const std::string& configPath,
                                DataIn& in,
                                DataOut& out,
                                bool use_mkldnn,
                                size_t iter) {
  FLAGS_use_gpu = false;
  FLAGS_use_mkldnn = use_mkldnn;
  *ThreadLocalRand::getSeed() = 1;
  srand(1);

  Trainer trainer;
  auto config = std::make_shared<TrainerConfigHelper>(configPath);
  trainer.init(config, false);
  auto gradientMachine = trainer.getGradientMachine();
  std::vector<ParameterPtr> parameters = gradientMachine->getParameters();
  for (size_t i = 0; i < in.paraValues.size(); i++) {
    parameters[i]->getBuf(PARAMETER_VALUE)->copyFrom(*in.paraValues[i]);
  }
  UpdateCallback simpleUpdate = [](Parameter* para) {
    auto& grad = para->getBuf(PARAMETER_GRADIENT);
    auto& value = para->getBuf(PARAMETER_VALUE);
    real lr = 1e-2;
    value->add(*grad, lr);
    grad->zeroMem();
  };

  vector<Argument> outArgs;
  gradientMachine->start();
  out.outValues.clear();
  out.paraValues.clear();
  for (size_t i = 0; i < iter; ++i) {
    VLOG(MKLDNN_TESTS) << "runing iteration " << i;
    gradientMachine->forward(in.inArgs[i], &outArgs, PASS_TRAIN);
    // save forward result
    for (size_t k = 0; k < outArgs.size(); k++) {
      MatrixPtr value = Matrix::create(outArgs[k].value->getHeight(),
                                       outArgs[k].value->getWidth(),
                                       false,
                                       false);
      value->copyFrom(*outArgs[k].value);
      out.outValues.push_back(value);
    }

    // random backward input
    for (size_t k = 0; k < outArgs.size(); k++) {
      outArgs[k].grad->copyFrom(*in.outGrads[i][k]);
    }
    gradientMachine->backward(simpleUpdate);
  }
  gradientMachine->finish();

  // save param value
  for (size_t i = 0; i < in.paraValues.size(); i++) {
    VectorPtr val = Vector::create(
        parameters[i]->getBuf(PARAMETER_VALUE)->getSize(), false);
    val->copyFrom(*parameters[i]->getBuf(PARAMETER_VALUE));
    out.paraValues.push_back(val);
  }
}

void MKLDNNTester::compareResult(DataOut& ref, DataOut& dnn, float eps) {
  CHECK_EQ(ref.outValues.size(), dnn.outValues.size());
  CHECK_EQ(ref.paraValues.size(), dnn.paraValues.size());
  for (size_t i = 0; i < ref.outValues.size(); i++) {
    EXPECT_LE(fabs(compareMatrix(ref.outValues[i], dnn.outValues[i])), eps);
  }
  for (size_t i = 0; i < ref.paraValues.size(); i++) {
    EXPECT_LE(fabs(compareVector(ref.paraValues[i], dnn.paraValues[i])), eps);
  }
}

void MKLDNNTester::runBranchesTest(const std::string& configPath,
                                   size_t iter,
                                   float eps) {
  DataIn in;
  initArgument(in, configPath, iter);

  DataOut outCpu, outDnn;
  getOutResult(configPath, in, outCpu, false, iter);
  getOutResult(configPath, in, outDnn, true, iter);

  compareResult(outCpu, outDnn, eps);
}

T
tensor-tang 已提交
555
}  //  namespace paddle