test_imperative.py 6.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

X
Xin Pan 已提交
15
import contextlib
16 17
import unittest
import numpy as np
X
Xin Pan 已提交
18
import sys
19 20 21

import paddle.fluid as fluid
from paddle.fluid import core
M
minqiyang 已提交
22
from paddle.fluid.imperative.nn import FC
M
minqiyang 已提交
23
from test_imperative_base import new_program_scope
24 25


X
Xin Pan 已提交
26
class MyLayer(fluid.imperative.Layer):
27 28 29 30
    def __init__(self):
        super(MyLayer, self).__init__()

    def forward(self, inputs):
M
minqiyang 已提交
31
        x = fluid.layers.relu(inputs)
32
        self._x_for_debug = x
X
Xin Pan 已提交
33 34 35
        x = fluid.layers.elementwise_mul(x, x)
        x = fluid.layers.reduce_sum(x)
        return [x]
36 37


X
Xin Pan 已提交
38 39 40 41 42 43
class MyPyLayer(fluid.imperative.PyLayer):
    def __init__(self):
        super(MyPyLayer, self).__init__()

    @staticmethod
    def forward(inputs):
X
Xin Pan 已提交
44
        return np.tanh(inputs[0])
X
Xin Pan 已提交
45 46

    @staticmethod
X
Xin Pan 已提交
47 48
    def backward(inputs):
        inp, out, dout = inputs
X
Xin Pan 已提交
49
        return np.array(dout) * (1 - np.square(np.array(out)))
X
Xin Pan 已提交
50 51


X
Xin Pan 已提交
52
class MLP(fluid.imperative.Layer):
X
Xin Pan 已提交
53 54 55 56 57 58 59 60 61 62
    def __init__(self):
        super(MLP, self).__init__()
        self._fc1 = FC(3,
                       fluid.ParamAttr(
                           initializer=fluid.initializer.Constant(value=0.1)))
        self._fc2 = FC(4,
                       fluid.ParamAttr(
                           initializer=fluid.initializer.Constant(value=0.1)))

    def forward(self, inputs):
M
minqiyang 已提交
63
        x = self._fc1(inputs)
X
Xin Pan 已提交
64 65 66 67 68
        x = self._fc2(x)
        x = fluid.layers.reduce_sum(x)
        return x


69 70 71 72 73
class TestImperative(unittest.TestCase):
    def test_layer(self):
        with fluid.imperative.guard():
            cl = core.Layer()
            cl.forward([])
X
Xin Pan 已提交
74
            l = fluid.imperative.Layer()
M
minqiyang 已提交
75
            self.assertRaises(NotImplementedError, l.forward, [])
X
polish  
Xin Pan 已提交
76 77 78 79 80 81 82 83 84 85

    def test_pylayer_func_id(self):

        with fluid.imperative.guard():

            class PyLayer1(fluid.imperative.PyLayer):
                def __init__(self):
                    super(PyLayer1, self).__init__()

                @staticmethod
M
minqiyang 已提交
86 87
                def forward(input):
                    return input
X
polish  
Xin Pan 已提交
88 89

                @staticmethod
M
minqiyang 已提交
90 91
                def backward(input):
                    return input
X
polish  
Xin Pan 已提交
92 93 94 95 96 97

            class PyLayer2(fluid.imperative.PyLayer):
                def __init__(self):
                    super(PyLayer2, self).__init__()

                @staticmethod
M
minqiyang 已提交
98 99
                def forward(input):
                    return input
X
polish  
Xin Pan 已提交
100 101

                @staticmethod
M
minqiyang 已提交
102 103
                def backward(input):
                    return input
X
polish  
Xin Pan 已提交
104 105 106

            py_layer_1 = PyLayer1()
            py_layer_2 = PyLayer2()
M
minqiyang 已提交
107 108
            py_layer_1(fluid.imperative.base.to_variable(np.ones([2, 2])))
            py_layer_2(fluid.imperative.base.to_variable(np.ones([2, 2])))
X
polish  
Xin Pan 已提交
109 110 111 112 113
            id = py_layer_1.forward_id
            self.assertGreater(id, 0)
            self.assertEqual(py_layer_1.backward_id, id + 1)
            self.assertEqual(py_layer_2.forward_id, id + 2)
            self.assertEqual(py_layer_2.backward_id, id + 3)
M
minqiyang 已提交
114
            py_layer_1(fluid.imperative.base.to_variable(np.ones([2, 2])))
X
polish  
Xin Pan 已提交
115
            self.assertEqual(py_layer_1.forward_id, id)
116

X
Xin Pan 已提交
117
    def test_pylayer(self):
X
Xin Pan 已提交
118
        np_inp = np.ones([2, 2], np.float32)
X
Xin Pan 已提交
119 120
        with fluid.imperative.guard():
            my_py_layer = MyPyLayer()
X
Xin Pan 已提交
121
            var_inp = fluid.imperative.base.to_variable(np_inp)
M
minqiyang 已提交
122
            outs = my_py_layer(var_inp)
X
Xin Pan 已提交
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
            dy_out = np.sum(outs[0]._numpy())
            outs[0]._backward()
            dy_grad = var_inp._gradient()

        with new_program_scope():
            inp = fluid.layers.data(
                name="inp", shape=[2, 2], append_batch_size=False)
            # TODO(panyx0718): Paddle doesn't diff against data `inp`.
            x1 = inp * 1
            # TODO(panyx0718): If reduce_sum is skipped, the result is wrong.
            x = fluid.layers.reduce_sum(fluid.layers.tanh(x1))
            param_grads = fluid.backward.append_backward(
                x, parameter_list=[x1.name])[0]
            exe = fluid.Executor(fluid.CPUPlace())

            static_out, static_grad = exe.run(
                feed={inp.name: np_inp},
                fetch_list=[x.name, param_grads[1].name])

        self.assertTrue(np.allclose(dy_out, static_out))
        self.assertTrue(np.allclose(dy_grad, static_grad))
X
Xin Pan 已提交
144

145
    def test_layer_in_out(self):
X
Xin Pan 已提交
146
        np_inp = np.array([1.0, 2.0, -1.0], dtype=np.float32)
147
        with fluid.imperative.guard():
M
minqiyang 已提交
148
            var_inp = fluid.imperative.base.to_variable(np_inp)
149
            l = MyLayer()
M
minqiyang 已提交
150
            x = l(var_inp)[0]
151
            self.assertIsNotNone(x)
X
Xin Pan 已提交
152
            dy_out = x._numpy()
153
            x._backward()
X
Xin Pan 已提交
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
            dy_grad = l._x_for_debug._gradient()

        with new_program_scope():
            inp = fluid.layers.data(
                name="inp", shape=[3], append_batch_size=False)
            l = MyLayer()
            x = l(inp)[0]
            param_grads = fluid.backward.append_backward(
                x, parameter_list=[l._x_for_debug.name])[0]
            exe = fluid.Executor(fluid.CPUPlace())

            static_out, static_grad = exe.run(
                feed={inp.name: np_inp},
                fetch_list=[x.name, param_grads[1].name])

        self.assertTrue(np.allclose(dy_out, static_out))
        self.assertTrue(np.allclose(dy_grad, static_grad))

    def test_mlp(self):
        np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
        with fluid.imperative.guard():
M
minqiyang 已提交
175
            var_inp = fluid.imperative.base.to_variable(np_inp)
X
Xin Pan 已提交
176
            mlp = MLP()
M
minqiyang 已提交
177
            out = mlp(var_inp)
X
Xin Pan 已提交
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
            dy_out = out._numpy()
            out._backward()
            dy_grad = mlp._fc1._w._gradient()

        with new_program_scope():
            inp = fluid.layers.data(
                name="inp", shape=[2, 2], append_batch_size=False)
            mlp = MLP()
            out = mlp(inp)
            param_grads = fluid.backward.append_backward(
                out, parameter_list=[mlp._fc1._w.name])[0]
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            static_out, static_grad = exe.run(
                feed={inp.name: np_inp},
                fetch_list=[out.name, param_grads[1].name])

        self.assertTrue(np.allclose(dy_out, static_out))
        self.assertTrue(np.allclose(dy_grad, static_grad))
198 199 200 201


if __name__ == '__main__':
    unittest.main()