memory_optimization_transpiler.py 16.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
from collections import defaultdict
18
from .. import core
M
minqiyang 已提交
19
from ... import compat as cpt
W
Wu Yi 已提交
20
from ..framework import Program, default_main_program, Parameter
21
from ..backward import _rename_arg_
22
from functools import reduce
23
from six.moves import range
24 25

dtype_to_size = {
26 27 28 29 30 31
    core.VarDesc.VarType.FP16: 2,
    core.VarDesc.VarType.FP32: 4,
    core.VarDesc.VarType.FP64: 8,
    core.VarDesc.VarType.INT16: 2,
    core.VarDesc.VarType.INT32: 4,
    core.VarDesc.VarType.INT64: 8,
32 33
    core.VarDesc.VarType.BOOL: 1,
    core.VarDesc.VarType.UINT8: 1,
34
}
35

36
SUB_BLOCK_OPS = [
37 38 39
    "while", "while_grad", "parallel_do", "parallel_do_grad",
    "conditional_block", "conditional_block_grad"
]
40

41 42 43
SUB_BLOCK_PAIR = [("while", "while_grad"), ("parallel_do", "parallel_do_grad"),
                  ("conditional_block", "conditional_block_grad")]

Q
qiaolongfei 已提交
44 45
PRINT_LOG = False

46 47

class ControlFlowGraph(object):
48 49
    def __init__(self, program, ops, forward_num, skip_opt):
        self._program = program
50 51 52 53
        self._ops = ops
        self._forward_num = forward_num
        self._successors = defaultdict(set)
        self._presuccessors = defaultdict(set)
54 55 56 57
        self._uses = defaultdict(set)
        self._defs = defaultdict(set)
        self._live_in = defaultdict(set)
        self._live_out = defaultdict(set)
58
        self._skip_opt = skip_opt
D
dzhwinter 已提交
59
        self.pool = []
60 61

    def _add_connections(self, connections):
62
        """Populates _successors and _presuccessors for two neighbor nodes."""
63 64 65 66
        for node1, node2 in connections:
            self._add(node1, node2)

    def _add(self, node1, node2):
67 68
        self._successors[node1].add(node2)
        self._presuccessors[node2].add(node1)
69

70 71
    # TODO(panyx0718): We need to have a unified way of building intermediate
    # representation.
72
    def _build_graph(self):
73 74
        """Build a graph based on op sequence.
        """
75
        self.op_size = len(self._ops)
76 77 78
        op_node_connections = [(i, i + 1) for i in range(self.op_size - 1)]
        self._add_connections(op_node_connections)
        for i in range(self.op_size):
79 80
            self._uses[i].update(self._ops[i].input_arg_names())
            self._defs[i].update(self._ops[i].output_arg_names())
D
dzhwinter 已提交
81
            self._live_in[i] = self._uses[i]
82

83 84 85 86 87 88 89 90 91 92
    def _update_graph(self, old_name, new_name, begin_idx=0):
        for i in range(begin_idx, self.op_size):
            if old_name in self._uses[i]:
                self._uses[i].remove(old_name)
                self._uses[i].add(new_name)
            if old_name in self._defs[i]:
                self._defs[i].remove(old_name)
                self._defs[i].add(new_name)
            if old_name in self._live_in[i]:
                self._live_in[i].remove(old_name)
D
dzhwinter 已提交
93
                self._live_in[i].add(new_name)
94 95 96 97
            if old_name in self._live_out[i]:
                self._live_out[i].remove(old_name)
                self._live_out[i].add(new_name)

98 99 100
    def _dataflow_analyze(self):
        self._build_graph()
        live_in = defaultdict(set)
D
dzhwinter 已提交
101 102 103 104 105 106 107 108 109 110 111
        worklist = list(range(len(self._ops) - 1, -1, -1))
        while worklist:
            i = worklist.pop(0)
            live_in[i] = set(self._live_in[i])
            for s in self._successors[i]:
                self._live_out[i] |= self._live_in[s]
            self._live_in[i] = self._uses[i] | (
                self._live_out[i] - self._defs[i])
            if live_in[i] != self._live_in[i]:
                for d in self._presuccessors[i]:
                    worklist.append(d)
112

D
dzhwinter 已提交
113 114 115 116 117 118 119 120 121
    def _fill_pool(self, i, is_forward):
        block_desc = self._ops[i].block()
        in_diff, _ = self._get_diff(self._live_in[i], self._live_out[i])
        can_optimize = [
            x for x in in_diff
            if self._check_var_validity(block_desc, x, is_forward)
        ]
        if can_optimize:
            for var_name in can_optimize:
D
dzhwinter 已提交
122 123
                cache = (var_name, self._find_var(block_desc, var_name,
                                                  is_forward).shape())
D
dzhwinter 已提交
124 125
                if cache not in self.pool:
                    self.pool.append(cache)
126 127 128 129 130

    def _get_diff(self, a, b):
        u = a & b
        return a - u, b - u

131 132
    def _has_var(self, block_desc, var_name, is_forward):
        if is_forward:
M
minqiyang 已提交
133
            return block_desc.has_var(cpt.to_bytes(var_name))
134
        else:
M
minqiyang 已提交
135
            return block_desc.has_var_recursive(cpt.to_bytes(var_name))
136 137 138

    def _find_var(self, block_desc, var_name, is_forward):
        if is_forward:
M
minqiyang 已提交
139
            return block_desc.find_var(cpt.to_bytes(var_name))
140
        else:
M
minqiyang 已提交
141
            return block_desc.find_var_recursive(cpt.to_bytes(var_name))
142

143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
    def _check_var_validity(self, block_desc, x, is_forward):
        if str(x) == "@EMPTY@":
            return False
        if not self._has_var(block_desc, x, is_forward):
            return False
        if self._find_var(block_desc, x, is_forward).persistable():
            return False
        if self._find_var(block_desc, x,
                          is_forward).type() != core.VarDesc.VarType.LOD_TENSOR:
            return False
        if x in self._skip_opt:
            return False
        if not self._find_var(block_desc, x, is_forward).shape():
            return False
        return True
158

159 160
    # TODO(panyx0718): This needs to be less hacky. It seems memory optimization
    # doesn't consider vars copied between cpu and gpu.
161 162 163 164 165 166
    def _update_skip_opt_set(self):
        for i in range(self.op_size):
            op = self._ops[i]
            if op.type() == "fill_constant" and op.attr("force_cpu") == True:
                self._skip_opt.update(op.output_arg_names())

167
    def release_memory(self, skip_opt_set=None):
168
        self._dataflow_analyze()
169
        self._update_skip_opt_set()
170 171
        if skip_opt_set:
            self._skip_opt.update(skip_opt_set)
172 173 174 175
        fwd_id = 0
        bwd_id = 0
        for i in range(self.op_size):
            op = self._ops[i]
176
            if op.type() in SUB_BLOCK_OPS:
177 178 179 180 181
                continue
            block_desc = op.block()
            is_forward = i < self._forward_num
            in_diff, out_diff = self._get_diff(self._live_in[i],
                                               self._live_out[i])
182 183 184 185
            can_optimize = [
                x for x in in_diff
                if self._check_var_validity(block_desc, x, is_forward)
            ]
186 187
            if can_optimize:
                index = i + fwd_id + 1 if is_forward else i - self._forward_num + bwd_id + 1
W
Wu Yi 已提交
188
                delete_op = block_desc._insert_op(index)
189 190 191 192 193 194 195
                delete_op.set_type("delete_var")
                delete_op.set_input("X", can_optimize)
                if is_forward:
                    fwd_id += 1
                else:
                    bwd_id += 1

196
    def memory_optimize(self, skip_opt_set=None, level=0):
197 198 199
        def compare_shape(x_shape, cache_shape, opt_level):
            if opt_level == 0:
                return x_shape == cache_shape
200
            elif opt_level == 1:
201 202 203 204 205 206
                if (x_shape[0] == -1) ^ (cache_shape[0] == -1):
                    return False
                x_size = abs(reduce(lambda x, y: x * y, x_shape))
                cache_size = abs(reduce(lambda x, y: x * y, cache_shape))
                if x_size <= cache_size:
                    return True
207 208
            else:
                raise ValueError("only support opt_level 0 or 1.")
209 210 211 212
            return False

        self._dataflow_analyze()
        self._update_skip_opt_set()
213 214 215
        # update skip set to meet users' demand
        if skip_opt_set:
            self._skip_opt.update(skip_opt_set)
216
        for i in range(self.op_size):
217
            op = self._ops[i]
218
            if op.type() in SUB_BLOCK_OPS:
219 220 221
                continue
            block_desc = op.block()
            is_forward = i < self._forward_num
222
            if self.pool:
223 224 225 226
                defs_can_optimize = [
                    x for x in self._defs[i]
                    if self._check_var_validity(block_desc, x, is_forward)
                ]
227 228 229 230
                out_pair = [
                    (x, self._find_var(block_desc, x, is_forward).shape())
                    for x in defs_can_optimize
                ]
231
                for x, x_shape in out_pair:
232 233 234
                    # If x is both in uses and defs, it can not be optimized!
                    if x in self._uses[i]:
                        continue
235 236 237
                    for index, cache_pair in enumerate(self.pool):
                        cache_var = cache_pair[0]
                        cache_shape = cache_pair[1]
238
                        if not self._has_var(block_desc, cache_var, is_forward):
D
"rerun"  
dzhwinter 已提交
239 240 241
                            if PRINT_LOG:
                                print("cache %s not exists!" %
                                      (cpt.to_text(cache_var)))
242
                            continue
D
dzhwinter 已提交
243
                        if x == cache_var:
D
"rerun"  
dzhwinter 已提交
244 245 246 247
                            if PRINT_LOG:
                                print("x : ", cpt.to_text(x), " cache : ",
                                      cpt.to_text(cache_var), " is same var!")
                            break
248 249 250 251 252

                        x_dtype = self._find_var(block_desc, x,
                                                 is_forward).dtype()
                        cache_dtype = self._find_var(block_desc, cache_var,
                                                     is_forward).dtype()
D
dzhwinter 已提交
253 254 255

                        if not compare_shape(x_shape, cache_shape, level):
                            continue
256 257 258 259 260 261
                        # TODO(qijun): actually, we should compare
                        # dtype_to_size[x_dtype] and dtype_to_size[cache_dtype]
                        if x_dtype != cache_dtype:
                            continue

                        if PRINT_LOG:
262 263 264 265 266
                            print(("Hit Cache !!!! cache pool index "
                                   "is %d, var name is %s, "
                                   "cached var name is %s, "
                                   "var shape is %s ") % (index, x, cache_var,
                                                          str(cache_shape)))
267 268 269 270
                        self.pool.pop(index)
                        # Rename the var to the cache var already with
                        # memory allocated in order to reuse the memory.
                        _rename_arg_(self._ops, x, cache_var, begin_idx=i)
M
minqiyang 已提交
271 272 273
                        self._program.block(block_desc.id).var(cpt.to_text(
                            x)).desc = self._find_var(block_desc, cache_var,
                                                      is_forward)
274 275
                        self._update_graph(x, cache_var, begin_idx=i)
                        break
D
dzhwinter 已提交
276
            self._fill_pool(i, is_forward)
277 278


279
def _process_sub_block_pair(pdesc, sub_block_pair):
280 281 282 283 284 285 286 287 288 289 290 291 292
    """Creates a list of tuple each of which tracks info of a subblock.

      Note: this function doesn't handle nested subblocks yet.
      TODO(panyx0718): assert if case nested subblocks happen.

    :param pdesc: ProgramDesc.
    :param sub_block_pair: A list op pairs. Each op pair is the forward
        op and backward op. The ops in the list are special that they contain
        a subblock of ops.
    :return: A list of tuples, each tuple is (all ops in a subblock pair
        including forward and backward, number of forward ops,
        all output args names of the ops in the subblock pairs).
    """
293 294 295
    ops_list = []
    block_desc = pdesc.block(0)
    op_size = block_desc.op_size()
296 297 298 299 300 301 302 303 304 305 306 307 308
    for fwd_op, bwd_op in sub_block_pair:
        sub_block_ids = []
        grad_sub_block_ids = []
        sub_block_id_pair = []
        sub_op_dict = {}
        for i in range(op_size):
            op = block_desc.op(i)
            if op.type() == fwd_op:
                sub_block_ids.append(op.attr("sub_block").id)
                sub_op_dict[op.attr("sub_block").id] = op
            elif op.type() == bwd_op:
                grad_sub_block_ids.append(op.attr("sub_block").id)
                sub_op_dict[op.attr("sub_block").id] = op
309

310 311
        # Find fwd_op/bwd_op block pair
        for grad_id in grad_sub_block_ids:
Q
qijun 已提交
312 313 314 315
            fwd_id = pdesc.block(grad_id).get_forward_block_idx()
            if fwd_id in sub_block_ids:
                sub_block_id_pair.append((fwd_id, grad_id))
                sub_block_ids.remove(fwd_id)
316

317
        # Get fwd_op/bwd_op block ops
Q
qijun 已提交
318
        for fwd_id, grad_id in sub_block_id_pair:
319
            sub_block_ops = []
Q
qijun 已提交
320
            sub_block = pdesc.block(fwd_id)
321 322 323
            block_op_size = sub_block.op_size()
            for i in range(block_op_size):
                sub_block_ops.append(sub_block.op(i))
324

325 326 327 328
            grad_sub_block = pdesc.block(grad_id)
            grad_sub_block_op_size = grad_sub_block.op_size()
            for i in range(grad_sub_block_op_size):
                sub_block_ops.append(grad_sub_block.op(i))
329

330
            sub_op_output = set()
Q
qijun 已提交
331
            sub_op_output.update(sub_op_dict[fwd_id].output_arg_names())
332
            sub_op_output.update(sub_op_dict[grad_id].output_arg_names())
333 334
            sub_op_output.update(sub_op_dict[fwd_id].input_arg_names())
            sub_op_output.update(sub_op_dict[grad_id].input_arg_names())
335
            ops_list.append((sub_block_ops, block_op_size, sub_op_output))
336

337
        # Process rest fwd_op block ops
Q
qijun 已提交
338
        for fwd_id in sub_block_ids:
339
            sub_block_ops = []
Q
qijun 已提交
340
            sub_block = pdesc.block(fwd_id)
341 342 343 344
            sub_block_op_size = sub_block.op_size()
            for i in range(sub_block_op_size):
                sub_block_ops.append(sub_block.op(i))
            sub_op_output = set()
Q
qijun 已提交
345
            sub_op_output.update(sub_op_dict[fwd_id].output_arg_names())
346
            sub_op_output.update(sub_op_dict[fwd_id].input_arg_names())
347 348
            ops_list.append((sub_block_ops, sub_block_op_size, sub_op_output))
    return ops_list
349

350

351
def _get_cfgs(input_program):
352 353 354 355 356
    """Process each block and create ControlFlowGraph for each of them.

    :param input_program: Program object.
    :return: A list of ControlFlowGraph, each corresponds to a block.
    """
357
    ops_list = []
W
Wu Yi 已提交
358
    pdesc = input_program._get_desc()
359 360
    block_desc = pdesc.block(0)
    op_size = block_desc.op_size()
361

362 363
    # Only process one level of nested subblock.
    ops_list.extend(_process_sub_block_pair(pdesc, SUB_BLOCK_PAIR))
364

365 366 367 368 369 370 371
    skip_opt_set = set()
    for _, _, skip_opt in ops_list:
        skip_opt_set.update(skip_opt)

    # Get global block ops
    ops_list.insert(
        0, ([block_desc.op(i) for i in range(op_size)], op_size, skip_opt_set))
372 373 374 375
    cfgs = [
        ControlFlowGraph(input_program, ops, forward_num, skip_opt)
        for ops, forward_num, skip_opt in ops_list
    ]
376
    return cfgs
377 378


379
def memory_optimize(input_program, skip_opt_set=None, print_log=False, level=0):
380 381 382 383
    """Optimize memory by reusing var memory.

      Note: it doesn't not support subblock nested in subblock.

D
"rerun"  
dzhwinter 已提交
384 385 386 387 388 389 390
    Args:
        input_program(str): Input Program
        skip_opt_set(set): vars wil be skipped in memory optimze
        print_log(bool): whether to print debug log.
        level(int): If level=0, reuse if the shape is completely equal, o
    Returns:
        None
391 392 393
    """
    if level != 0 and level != 1:
        raise ValueError("only support opt_level 0 or 1.")
Q
qiaolongfei 已提交
394 395
    global PRINT_LOG
    PRINT_LOG = print_log
396
    cfgs = _get_cfgs(input_program)
397
    for cfg in cfgs:
398
        cfg.memory_optimize(skip_opt_set=skip_opt_set, level=level)
399 400


401
def release_memory(input_program, skip_opt_set=None):
Y
yuyang18 已提交
402 403 404 405 406 407 408 409 410
    """
    Modify the input program and insert :code:`delete_op` to early drop not used
    variables. The modification will be performed inplace.

    Notes: This is an experimental API and could be removed in next few
    releases. Users should not use this API.

    Args:
        input_program(Program): The program will be inserted :code:`delete_op`.
D
"rerun"  
dzhwinter 已提交
411 412 413
        skip_opt_set(set): vars wil be skipped in memory optimze
    Returns:
        None
Y
yuyang18 已提交
414
    """
415 416
    cfgs = _get_cfgs(input_program)
    for cfg in cfgs:
417
        cfg.release_memory(skip_opt_set=skip_opt_set)