test_lstm_cudnn_op.py 16.4 KB
Newer Older
P
phlrain 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
G
GaoWei8 已提交
19
import math
P
phlrain 已提交
20 21 22

import paddle.fluid.core as core
from op_test import OpTest
P
phlrain 已提交
23
import paddle.fluid as fluid
G
GaoWei8 已提交
24
import paddle.fluid.layers as layers
P
phlrain 已提交
25 26 27 28

SIGMOID_THRESHOLD_MIN = -40.0
SIGMOID_THRESHOLD_MAX = 13.0
EXP_MAX_INPUT = 40.0
P
phlrain 已提交
29 30


G
GaoWei8 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
class LayerMixin(object):
    def __call__(self, *args, **kwargs):
        return self.forward(*args, **kwargs)


class LayerListMixin(LayerMixin):
    def __init__(self, layers=None):
        self._layers = list(layers) if layers else []

    def append(self, layer):
        self._layers.append(layer)

    def __iter__(self):
        return iter(self._layers)


class LSTMCell(LayerMixin):
    def __init__(self, input_size, hidden_size, bias=True):
        self.input_size = input_size
        self.hidden_size = hidden_size
        self.bias = bias
        self.dtype = np.float64
        self.parameters = dict()
        std = 1.0 / math.sqrt(hidden_size)
        self.weight_ih = np.ones(
            (4 * hidden_size, input_size), dtype=self.dtype)
        self.weight_hh = np.ones((4 * hidden_size,
                                  hidden_size)).astype(self.dtype)
        self.parameters['weight_ih'] = self.weight_ih
        self.parameters['weight_hh'] = self.weight_hh
        if bias:
            self.bias_ih = np.ones((4 * hidden_size)).astype(self.dtype)
            self.bias_hh = np.ones((4 * hidden_size)).astype(self.dtype)
            self.parameters['bias_ih'] = self.bias_ih
            self.parameters['bias_hh'] = self.bias_hh
        else:
            self.bias_ih = None
            self.bias_hh = None

    def init_state(self, inputs):
        batch_size = inputs.shape[0]
        init_h = np.zeros((batch_size, self.hidden_size), dtype=inputs.dtype)
        init_c = np.zeros((batch_size, self.hidden_size), dtype=inputs.dtype)
        return init_h, init_c

    def forward(self, inputs, hx=None):
        if hx is None:
            hx = self.init_state(inputs)
        pre_hidden, pre_cell = hx
        gates = np.matmul(inputs, self.weight_ih.T)
        if self.bias_ih is not None:
            gates = gates + self.bias_ih
        gates += np.matmul(pre_hidden, self.weight_hh.T)
        if self.bias_hh is not None:
            gates = gates + self.bias_hh

        chunked_gates = np.split(gates, 4, -1)

        i = 1.0 / (1.0 + np.exp(-chunked_gates[0]))
        f = 1.0 / (1.0 + np.exp(-chunked_gates[1]))
        o = 1.0 / (1.0 + np.exp(-chunked_gates[3]))
        c = f * pre_cell + i * np.tanh(chunked_gates[2])
        h = o * np.tanh(c)

        return h, (h, c)


def sequence_mask(lengths, max_len=None):
    if max_len is None:
        max_len = np.max(lengths)
    else:
        assert max_len >= np.max(lengths)
    return np.arange(max_len) < np.expand_dims(lengths, -1)


def update_state(mask, new, old):
    if not isinstance(old, (tuple, list)):
        return np.where(mask, new, old)
    else:
        return tuple(map(lambda x, y: np.where(mask, x, y), new, old))


def rnn(cell,
        inputs,
        initial_states,
        sequence_length=None,
        time_major=False,
        is_reverse=False):
    if not time_major:
        inputs = np.transpose(inputs, [1, 0, 2])
    if is_reverse:
        inputs = np.flip(inputs, 0)

    if sequence_length is None:
        mask = None
    else:
        mask = np.transpose(sequence_mask(sequence_length), [1, 0])
        mask = np.expand_dims(mask, -1)
        if is_reverse:
            mask = np.flip(mask, 0)

    time_steps = inputs.shape[0]
    state = initial_states
    outputs = []
    for t in range(time_steps):
        x_t = inputs[t]
        if mask is not None:
            m_t = mask[t]
            y, new_state = cell(x_t, state)
            y = np.where(m_t, y, 0.)
            outputs.append(y)
            state = update_state(m_t, new_state, state)
        else:
            y, new_state = cell(x_t, state)
            outputs.append(y)
            state = new_state

    outputs = np.stack(outputs)
    final_state = state

    if is_reverse:
        outputs = np.flip(outputs, 0)
    if not time_major:
        outputs = np.transpose(outputs, [1, 0, 2])
    return outputs, final_state


def birnn(cell_fw,
          cell_bw,
          inputs,
          initial_states,
          sequence_length=None,
          time_major=False):
    states_fw, states_bw = initial_states
    outputs_fw, states_fw = rnn(cell_fw,
                                inputs,
                                states_fw,
                                sequence_length,
                                time_major=time_major)

    outputs_bw, states_bw = rnn(cell_bw,
                                inputs,
                                states_bw,
                                sequence_length,
                                time_major=time_major,
                                is_reverse=True)

    outputs = np.concatenate((outputs_fw, outputs_bw), -1)
    final_states = (states_fw, states_bw)
    return outputs, final_states


def flatten(nested):
    return list(_flatten(nested))


def _flatten(nested):
    for item in nested:
        if isinstance(item, (list, tuple)):
            for subitem in _flatten(item):
                yield subitem
        else:
            yield item


def unstack(array, axis=0):
    num = array.shape[axis]
    sub_arrays = np.split(array, num, axis)
    return [np.squeeze(sub_array, axis) for sub_array in sub_arrays]


def dropout(array, p=0.0):
    if p == 0.0:
        return array

    mask = (np.random.uniform(size=array.shape) < (1 - p)).astype(array.dtype)
    return array * (mask / (1 - p))


def split_states(states, bidirectional=False, state_components=1):
    if state_components == 1:
        states = unstack(states)
        if not bidirectional:
            return states
        else:
            return list(zip(states[::2], states[1::2]))
    else:
        assert len(states) == state_components
        states = tuple([unstack(item) for item in states])
        if not bidirectional:
            return list(zip(*states))
        else:
            states = list(zip(*states))
            return list(zip(states[::2], states[1::2]))


def concat_states(states, bidirectional=False, state_components=1):
    if state_components == 1:
        return np.stack(flatten(states))
    else:
        states = flatten(states)
        componnets = []
        for i in range(state_components):
            componnets.append(states[i::state_components])
        return [np.stack(item) for item in componnets]


class RNN(LayerMixin):
    def __init__(self, cell, is_reverse=False, time_major=False):
        super(RNN, self).__init__()
        self.cell = cell
        if not hasattr(self.cell, "call"):
            # for non-dygraph mode, `rnn` api uses cell.call
            self.cell.call = self.cell.forward
        self.is_reverse = is_reverse
        self.time_major = time_major

    def forward(self, inputs, initial_states=None, sequence_length=None):
        final_outputs, final_states = rnn(self.cell,
                                          inputs,
                                          initial_states=initial_states,
                                          sequence_length=sequence_length,
                                          time_major=self.time_major,
                                          is_reverse=self.is_reverse)
        return final_outputs, final_states


class BiRNN(LayerMixin):
    def __init__(self, cell_fw, cell_bw, time_major=False):
        super(BiRNN, self).__init__()
        self.cell_fw = cell_fw
        self.cell_bw = cell_bw
        self.time_major = time_major

    def forward(self,
                inputs,
                initial_states=None,
                sequence_length=None,
                **kwargs):
        if isinstance(initial_states, (list, tuple)):
            assert len(initial_states) == 2, \
                "length of initial_states should be 2 when it is a list/tuple"
        else:
            initial_states = [initial_states, initial_states]

        outputs, final_states = birnn(self.cell_fw, self.cell_bw, inputs,
                                      initial_states, sequence_length,
                                      self.time_major)
        return outputs, final_states


class RNNMixin(LayerListMixin):
    def forward(self, inputs, initial_states=None, sequence_length=None):
        batch_index = 1 if self.time_major else 0
        batch_size = inputs.shape[batch_index]
        dtype = inputs.dtype
        if initial_states is None:
            state_shape = (self.num_layers * self.num_directions, batch_size,
                           self.hidden_size)
            if self.state_components == 1:
                initial_states = np.zeros(state_shape, dtype)
            else:
                initial_states = tuple([
                    np.zeros(state_shape, dtype)
                    for _ in range(self.state_components)
                ])

        states = split_states(initial_states, self.num_directions == 2,
                              self.state_components)
        final_states = []

        for i, rnn_layer in enumerate(self):
            if i > 0:
                inputs = dropout(inputs, self.dropout)
            outputs, final_state = rnn_layer(inputs, states[i], sequence_length)
            final_states.append(final_state)
            inputs = outputs

        final_states = concat_states(final_states, self.num_directions == 2,
                                     self.state_components)
        return outputs, final_states


class LSTM(RNNMixin):
    def __init__(self,
                 input_size,
                 hidden_size,
                 num_layers=1,
                 direction="forward",
                 dropout=0.,
                 time_major=False):
        super(LSTM, self).__init__()

        if direction in ["forward", "backward"]:
            is_reverse = direction == "backward"
            cell = LSTMCell(input_size, hidden_size)
            self.append(RNN(cell, is_reverse, time_major))
            for i in range(1, num_layers):
                cell = LSTMCell(hidden_size, hidden_size)
                self.append(RNN(cell, is_reverse, time_major))
        elif direction == "bidirectional":
            cell_fw = LSTMCell(input_size, hidden_size)
            cell_bw = LSTMCell(input_size, hidden_size)
            self.append(BiRNN(cell_fw, cell_bw, time_major))
            for i in range(1, num_layers):
                cell_fw = LSTMCell(2 * hidden_size, hidden_size)
                cell_bw = LSTMCell(2 * hidden_size, hidden_size)
                self.append(BiRNN(cell_fw, cell_bw, time_major))
        else:
            raise ValueError(
                "direction should be forward, backward or bidirectional, "
                "received direction = {}".format(direction))

        self.input_size = input_size
        self.hidden_size = hidden_size
        self.dropout = dropout
        self.num_directions = 2 if direction == "bidirectional" else 1
        self.time_major = time_major
        self.num_layers = num_layers
        self.state_components = 2
P
phlrain 已提交
351 352


353 354
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
P
phlrain 已提交
355
class TestCUDNNLstmOp(OpTest):
G
GaoWei8 已提交
356
    #TODO(GaoWei8): Need to satisfy the result through the new interface
P
phlrain 已提交
357 358
    def setUp(self):
        self.op_type = "cudnn_lstm"
G
GaoWei8 已提交
359
        self.dtype = np.float64
G
GaoWei8 已提交
360 361
        self.sequence_length = np.array([12, 11, 10, 9, 8], dtype=np.int32)
        self.num_layers = 1
P
phlrain 已提交
362

G
GaoWei8 已提交
363
        seq_length = 12
P
phlrain 已提交
364
        batch_size = 5
G
GaoWei8 已提交
365 366
        input_size = 21
        hidden_size = 21
P
phlrain 已提交
367 368 369 370 371

        input_weight_size = (hidden_size * hidden_size) * 4
        hidden_weight_size = (hidden_size * hidden_size) * 4
        weight_size = input_weight_size + hidden_weight_size
        weight_size += hidden_size * 8
G
GaoWei8 已提交
372
        weight_size *= self.num_layers
P
phlrain 已提交
373

P
phlrain 已提交
374
        input = np.random.uniform(
G
GaoWei8 已提交
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
            low=-0.1, high=0.1,
            size=(seq_length, batch_size, input_size)).astype(self.dtype)
        input[11][1:][:] = 0
        input[10][2:][:] = 0
        input[9][3:][:] = 0
        input[8][4:][:] = 0

        rnn1 = LSTM(
            input_size,
            hidden_size,
            self.num_layers,
            time_major=True,
            direction="forward")

        output, (last_hidden, last_cell) = rnn1(
            input, sequence_length=self.sequence_length)

        flat_w = np.ones((weight_size)).astype(self.dtype)
        init_h = np.zeros((self.num_layers, batch_size,
                           hidden_size)).astype(self.dtype)
        init_c = np.zeros((self.num_layers, batch_size,
                           hidden_size)).astype(self.dtype)
G
GaoWei8 已提交
397 398
        state_out = np.ndarray((300)).astype("uint8")

P
phlrain 已提交
399
        self.inputs = {
G
GaoWei8 已提交
400 401 402 403
            'Input': input,
            'W': flat_w,
            'InitH': init_h,
            'InitC': init_c
P
phlrain 已提交
404 405 406 407
        }
        self.attrs = {
            'dropout_prob': 0.0,
            'is_bidirec': False,
G
GaoWei8 已提交
408
            'input_size': input_size,
P
phlrain 已提交
409 410
            'hidden_size': hidden_size,
            'num_layers': 1,
G
GaoWei8 已提交
411
            'sequence_length': self.sequence_length.tolist()
P
phlrain 已提交
412
        }
P
phlrain 已提交
413 414
        self.outputs = {
            'Out': output,
G
GaoWei8 已提交
415 416 417 418
            "LastH": last_hidden,
            'LastC': last_cell,
            'Reserve': np.ndarray((400)).astype("uint8"),
            'StateOut': state_out
P
phlrain 已提交
419
        }
P
phlrain 已提交
420

G
GaoWei8 已提交
421 422 423
    def set_attrs(self):
        pass

P
phlrain 已提交
424
    def test_output_with_place(self):
425
        place = core.CUDAPlace(0)
G
GaoWei8 已提交
426 427
        self.check_output_with_place(
            place, no_check_set=['Reserve', 'StateOut'])
P
phlrain 已提交
428

P
phlrain 已提交
429
    def test_grad_with_place(self):
430
        place = core.CUDAPlace(0)
G
GaoWei8 已提交
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
        self.check_grad_with_place(place,
                                   set(['Input', 'W', 'InitH', 'InitC']),
                                   ['Out', 'LastH', 'LastC'])


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNLstmOp2(TestCUDNNLstmOp):
    def set_attrs(self):
        self.sequence_length = np.array([], dtype=np.int32)


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNLstmOp3(TestCUDNNLstmOp):
    def set_attrs(self):
        self.num_layers = 2
G
GaoWei8 已提交
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNlstmAPI(unittest.TestCase):
    def test_lstm(self):
        seq_len = 20
        batch_size = 5
        hidden_size = 20
        dropout_prob = 0.0
        num_layers = 1
        input = fluid.data(
            name='input',
            shape=[seq_len, batch_size, hidden_size],
            dtype='float64')
        init_h = layers.fill_constant([num_layers, batch_size, hidden_size],
                                      'float64', 0.0)
        init_c = layers.fill_constant([num_layers, batch_size, hidden_size],
                                      'float64', 0.0)
        rnn_out, last_h, last_c = layers.lstm(input, init_h, init_c, seq_len,
                                              hidden_size, num_layers,
G
GaoWei8 已提交
469
                                              dropout_prob, False, True)
G
GaoWei8 已提交
470 471 472 473 474 475 476 477 478
        exe = fluid.Executor(fluid.CUDAPlace(0))
        exe.run(fluid.default_startup_program())
        input_i = np.random.uniform(
            low=-0.1, high=0.1, size=(seq_len, batch_size,
                                      hidden_size)).astype("float64")
        out = exe.run(fluid.default_main_program(),
                      feed={'input': input_i},
                      fetch_list=[rnn_out, last_h, last_c, 'cudnn_lstm_0.w_0'])

P
phlrain 已提交
479 480 481

if __name__ == '__main__':
    unittest.main()