dropout_op_xpu.cc 7.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/dropout_op.h"
#include <memory>
#include <string>
Q
QingshuChen 已提交
14
#include "paddle/fluid/platform/xpu/xpu_header.h"
15 16 17 18
namespace paddle {
namespace operators {

#ifdef PADDLE_WITH_XPU
19

20 21
template <typename DeviceContext, typename T>
class DropoutXPUKernel : public framework::OpKernel<T> {
22 23
  using XPUTyp = typename XPUTypeTrait<T>::Type;

24 25 26 27 28 29 30 31 32
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* x = context.Input<Tensor>("X");
    auto* y = context.Output<Tensor>("Out");
    const auto* x_data = x->data<T>();
    auto* y_data = y->mutable_data<T>(context.GetPlace());
    float dropout_prob = context.Attr<float>("dropout_prob");
    auto dropout_implementation =
        context.Attr<std::string>("dropout_implementation");
33 34
    auto& dev_ctx = context.template device_context<DeviceContext>();

35 36 37
    PADDLE_ENFORCE_EQ(!context.HasInput("Seed"), true,
                      platform::errors::InvalidArgument(
                          ("Input(Seed) not supported on XPU")));
38 39
    int is_upscale = (dropout_implementation == "upscale_in_train");

40
    if (!context.Attr<bool>("is_test")) {
41 42 43 44 45 46
      std::random_device rnd;
      // int seed = (context.Attr<bool>("fix_seed")) ?
      // int(context.Attr<int>("seed")) : (rnd());
      int seed = 0;
      if (context.Attr<bool>("fix_seed") == true) {
        seed = static_cast<int>(context.Attr<int>("seed"));
47
      } else {
48
        seed = rnd();
49
      }
50

51 52
      auto* mask = context.Output<Tensor>("Mask");
      auto* mask_data = mask->mutable_data<T>(context.GetPlace());
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
      // Special case when dropout_prob is 1.0
      if (dropout_prob == 1.0f) {
        int r = xpu::constant(dev_ctx.x_context(),
                              reinterpret_cast<XPUTyp*>(y_data), y->numel(),
                              XPUTyp(0));
        PADDLE_ENFORCE_EQ(r, XPU_SUCCESS, platform::errors::External(
                                              "XPU API(constant) return wrong "
                                              "value[%d %s]",
                                              r, XPUAPIErrorMsg[r]));
        r = xpu::constant(dev_ctx.x_context(),
                          reinterpret_cast<XPUTyp*>(mask_data), mask->numel(),
                          XPUTyp(0));
        PADDLE_ENFORCE_EQ(r, XPU_SUCCESS, platform::errors::External(
                                              "XPU API(constant) return wrong "
                                              "value[%d %s]",
                                              r, XPUAPIErrorMsg[r]));
        return;
70
      }
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
      int r = xpu::dropout(dev_ctx.x_context(),
                           reinterpret_cast<const XPUTyp*>(x->data<T>()),
                           reinterpret_cast<XPUTyp*>(y->data<T>()),
                           reinterpret_cast<XPUTyp*>(mask_data), seed,
                           mask->numel(), is_upscale, dropout_prob);
      PADDLE_ENFORCE_EQ(r, XPU_SUCCESS, platform::errors::External(
                                            "XPU API(dropout) return wrong "
                                            "value[%d %s]",
                                            r, XPUAPIErrorMsg[r]));
    } else {
      float scale =
          (is_upscale) ? (1.0) : (static_cast<float>(1.0f - dropout_prob));
      int r = xpu::scale(
          dev_ctx.x_context(), reinterpret_cast<const XPUTyp*>(x_data),
          reinterpret_cast<XPUTyp*>(y_data), x->numel(), false, scale, 0.0f);
      PADDLE_ENFORCE_EQ(r, XPU_SUCCESS, platform::errors::External(
                                            "XPU API(scale) return wrong "
                                            "value[%d %s]",
                                            r, XPUAPIErrorMsg[r]));
90 91 92 93 94
    }
  }
};
template <typename DeviceContext, typename T>
class DropoutGradXPUKernel : public framework::OpKernel<T> {
95 96
  using XPUTyp = typename XPUTypeTrait<T>::Type;

97 98
 public:
  void Compute(const framework::ExecutionContext& context) const override {
X
xiaoting 已提交
99 100 101
    PADDLE_ENFORCE_EQ(!context.Attr<bool>("is_test"), true,
                      platform::errors::InvalidArgument(
                          "GradOp is only callable when is_test is false"));
102 103 104 105 106
    auto* grad_x = context.Output<Tensor>(framework::GradVarName("X"));
    auto* grad_y = context.Input<Tensor>(framework::GradVarName("Out"));
    auto* mask = context.Input<Tensor>("Mask");
    grad_x->mutable_data<T>(context.GetPlace());
    auto& dev_ctx = context.template device_context<DeviceContext>();
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
    auto& dropout_implementation =
        context.Attr<std::string>("dropout_implementation");
    float dropout_prob = context.Attr<float>("dropout_prob");
    const T* mask_data = mask->data<T>();
    framework::Tensor mask_new;
    if (dropout_implementation == "upscale_in_train") {
      mask_new = context.AllocateTmpTensor<T, platform::XPUDeviceContext>(
          mask->dims(), dev_ctx);
      float scale =
          (dropout_prob == 1.0f) ? (1.0f) : (1.0f / (1.0f - dropout_prob));
      int r = xpu::scale(dev_ctx.x_context(),
                         reinterpret_cast<const XPUTyp*>(mask->data<T>()),
                         reinterpret_cast<XPUTyp*>(mask_new.data<T>()),
                         mask->numel(), false, scale, 0.0f);
      PADDLE_ENFORCE_EQ(r, XPU_SUCCESS, platform::errors::External(
                                            "XPU API(scale) return wrong "
                                            "value[%d %s]",
                                            r, XPUAPIErrorMsg[r]));
      mask_data = mask_new.data<T>();
    }

    int r = xpu::mul(
        dev_ctx.x_context(), reinterpret_cast<const XPUTyp*>(grad_y->data<T>()),
        reinterpret_cast<const XPUTyp*>(mask_data),
        reinterpret_cast<XPUTyp*>(grad_x->data<T>()), grad_y->numel());
    PADDLE_ENFORCE_EQ(r, XPU_SUCCESS,
                      platform::errors::External("XPU API(mul) return wrong "
                                                 "value[%d %s]",
                                                 r, XPUAPIErrorMsg[r]));
136 137 138 139 140
  }
};
}  // namespace operators
}  // namespace paddle
namespace ops = paddle::operators;
141
namespace plat = paddle::platform;
142
REGISTER_OP_XPU_KERNEL(
143 144
    dropout, ops::DropoutXPUKernel<paddle::platform::XPUDeviceContext, float>,
    ops::DropoutXPUKernel<paddle::platform::XPUDeviceContext, plat::float16>);
145 146
REGISTER_OP_XPU_KERNEL(
    dropout_grad,
147 148 149
    ops::DropoutGradXPUKernel<paddle::platform::XPUDeviceContext, float>,
    ops::DropoutGradXPUKernel<paddle::platform::XPUDeviceContext,
                              plat::float16>);
150
#endif