utils.py 42.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

17
import ast
18
import astor
19 20
import atexit
import copy
21
import collections
22 23 24 25 26
import gast
import inspect
import os
import six
import tempfile
27
import textwrap
28
import numpy as np
29

30
from paddle.fluid import unique_name
31
from paddle.fluid.data_feeder import convert_dtype
32

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

class BaseNodeVisitor(gast.NodeVisitor):
    """
    Implement customized NodeVisitor inherited from gast.NodeVisitor. 
    Ancestor nodes are traced to easily support more operations of currently
    visited node.
    """

    def __init__(self):
        self.ancestor_nodes = []

    def visit(self, node):
        """Visit a node."""
        self.ancestor_nodes.append(node)

        method = 'visit_' + node.__class__.__name__
        visitor = getattr(self, method, self.generic_visit)
        ret = visitor(node)
        self.ancestor_nodes.pop()
        return ret


55 56 57 58 59 60
# imp is deprecated in python3
if six.PY2:
    import imp
else:
    from importlib.machinery import SourceFileLoader

61 62 63 64 65 66 67 68 69 70
dygraph_class_to_static_api = {
    "CosineDecay": "cosine_decay",
    "ExponentialDecay": "exponential_decay",
    "InverseTimeDecay": "inverse_time_decay",
    "NaturalExpDecay": "natural_exp_decay",
    "NoamDecay": "noam_decay",
    "PiecewiseDecay": "piecewise_decay",
    "PolynomialDecay": "polynomial_decay",
}

71
FOR_ITER_INDEX_PREFIX = '__for_loop_var_index'
72
FOR_ITER_VAR_LEN_PREFIX = '__for_loop_var_len'
73
FOR_ITER_VAR_NAME_PREFIX = '__for_loop_iter_var'
74

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
# FullArgSpec is valid from Python3. Defined a Namedtuple to
# to make it available in Python2.
FullArgSpec = collections.namedtuple('FullArgSpec', [
    'args', 'varargs', 'varkw', 'defaults', 'kwonlyargs', 'kwonlydefaults',
    'annotations'
])


def getfullargspec(target):
    if hasattr(inspect, "getfullargspec"):
        return inspect.getfullargspec(target)
    else:
        argspec = inspect.getargspec(target)
        return FullArgSpec(
            args=argspec.args,
            varargs=argspec.varargs,
            varkw=argspec.keywords,
            defaults=argspec.defaults,
            kwonlyargs=[],
            kwonlydefaults=None,
            annotations={})


def parse_arg_and_kwargs(function):
    """
    Returns full argument names as list. e.g ['x', 'y', 'z']
    """
    fullargspec = getfullargspec(function)
    arg_names = fullargspec.args
    if arg_names and 'self' == arg_names[0]:
        arg_names = fullargspec.args[1:]

    # parse default kwargs
    default_kwargs = {}
    default_values = fullargspec.defaults
    if default_values:
        assert len(default_values) <= len(arg_names)
        default_kwarg_names = arg_names[-len(default_values):]
        default_kwargs = dict(zip(default_kwarg_names, default_values))

    return arg_names, default_kwargs


W
WeiXin 已提交
118 119 120 121 122 123 124 125 126
def parse_varargs_name(function):
    """
    Returns varargs name string of function. e.g: 'input' from `foo(x, *input)`
    """
    fullargspec = getfullargspec(function)
    varargs = fullargspec.varargs
    return varargs


127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
def type_name(v):
    return type(v).__name__


def make_hashable(x, error_msg=None):
    """
    Makes input `x` hashable.

    For some unhashable objects, such as `dict/list/np.ndarray`,applying hash function by using their values.
    """
    if isinstance(x, (tuple, list)):
        return tuple(map(make_hashable, x))

    try:
        hash(x)
    except TypeError:
        if isinstance(x, np.ndarray):
            # Note: `tostring()` will return the binary data from np.ndarray that
            # means different value will lead to different hash code.
            return hash(x.tostring())
        elif isinstance(x, dict):
            return tuple(map(make_hashable, x.values()))

        error_msg = error_msg or "Requires a hashable object."
        raise ValueError(error_msg + " But received type: %s" % type_name(x))

    return x

155

156 157 158 159 160 161 162
def _is_api_in_module_helper(obj, module_prefix):
    m = inspect.getmodule(obj)
    return m is not None and m.__name__.startswith(module_prefix)


def is_api_in_module(node, module_prefix):
    assert isinstance(node, gast.Call), "Input non-Call node for is_dygraph_api"
163 164 165 166 167 168 169 170

    # Python can have gast.Call as function, for example: covert_call(func)(x)
    # We only check the most outside function
    func_node = node.func
    while isinstance(func_node, gast.Call):
        func_node = func_node.func

    func_str = astor.to_source(gast.gast_to_ast(func_node)).strip()
171
    try:
172 173 174 175 176
        # TODO(liym27):
        #  Consider a better to import modules like:
        #  source_file = inspect.getfile(dyfunc)
        #  import_statements = ImportVisitor(source_file).transform()
        #  import_str = "".join(import_statements)
177
        import paddle
L
liym27 已提交
178
        import paddle.fluid as fluid
179
        import paddle.fluid.dygraph as dygraph
L
liym27 已提交
180
        import paddle.fluid.layers as layers
181

182
        from paddle.fluid.dygraph import to_variable
183 184
        from paddle import to_tensor

185 186 187 188 189 190 191
        return eval("_is_api_in_module_helper({}, '{}')".format(func_str,
                                                                module_prefix))
    except NameError:
        return False


def is_dygraph_api(node):
192

193 194 195 196
    # Note: A api in module dygraph_to_static is not a real dygraph api.
    if is_api_in_module(node, "paddle.fluid.dygraph.dygraph_to_static"):
        return False

197 198
    # TODO(liym27): A better way to determine whether it is a dygraph api.
    #  Consider the decorator @dygraph_only
199 200 201 202
    return is_api_in_module(node, "paddle.fluid.dygraph")


def is_paddle_api(node):
203
    return is_api_in_module(node, "paddle")
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221


# Is numpy_api cannot reuse is_api_in_module because of numpy module problem
def is_numpy_api(node):
    assert isinstance(node, gast.Call), "Input non-Call node for is_numpy_api"
    func_str = astor.to_source(gast.gast_to_ast(node.func))
    try:
        import numpy as np
        module_result = eval("_is_api_in_module_helper({}, '{}')".format(
            func_str, "numpy"))
        # BUG: np.random.uniform doesn't have module and cannot be analyzed
        # TODO: find a better way
        if not module_result:
            return func_str.startswith("numpy.") or func_str.startswith("np.")
    except NameError:
        return False


L
liym27 已提交
222 223 224
def is_control_flow_to_transform(node,
                                 static_analysis_visitor=None,
                                 var_name_to_type=None):
225
    """
L
liym27 已提交
226 227
    Determines whether the node is a PaddlePaddle control flow statement which needs to
    be transformed into a static graph control flow statement.
228 229 230
    """
    assert isinstance(node, gast.AST), \
        "The type of input node must be gast.AST, but received %s." % type(node)
L
liym27 已提交
231 232 233 234
    visitor = IsControlFlowVisitor(
        node, static_analysis_visitor, node_var_type_map=var_name_to_type)
    need_to_transform = visitor.transform()
    return need_to_transform
235 236


237 238
def _delete_keywords_from(node):
    assert isinstance(node, gast.Call)
239
    func_src = astor.to_source(gast.gast_to_ast(node.func))
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
    import paddle.fluid as fluid
    full_args = eval("inspect.getargspec({})".format(func_src))
    full_args_name = full_args[0]

    node.keywords = [k for k in node.keywords if k.arg in full_args_name]
    return


def to_static_api(dygraph_class):
    if dygraph_class in dygraph_class_to_static_api:
        return dygraph_class_to_static_api[dygraph_class]
    else:
        raise NotImplementedError("Paddle dygraph API {} cannot be converted "
                                  "to static graph at present.".format(
                                      dygraph_class))


def _add_keywords_to(node, dygraph_api_name):
    assert isinstance(node, gast.Call)
    if dygraph_api_name == "Linear":
        for ast_keyword in node.keywords:
            if ast_keyword.arg == "output_dim":
                ast_keyword.arg = "size"

        node.keywords.append(
            gast.keyword(
                arg="num_flatten_dims",
                value=gast.Constant(
                    value=-1, kind=None)))

    if dygraph_api_name == "BilinearTensorProduct":
        for ast_keyword in node.keywords:
            if ast_keyword.arg == "output_dim":
                ast_keyword.arg = "size"

    if dygraph_api_name == "PRelu":
        for ast_keyword in node.keywords:
            if ast_keyword.arg == "input":
                ast_keyword.arg = "x"
    return


def to_static_ast(node, class_node):
    assert isinstance(node, gast.Call)
    assert isinstance(class_node, gast.Call)
    static_api = to_static_api(class_node.func.attr)

    node.func = gast.Attribute(
        attr=static_api,
        ctx=gast.Load(),
        value=gast.Attribute(
            attr='layers',
            ctx=gast.Load(),
            value=gast.Name(
                ctx=gast.Load(), id='fluid', annotation=None,
                type_comment=None)))

    update_args_of_func(node, class_node, 'forward')

    node.args.extend(class_node.args)
    node.keywords.extend(class_node.keywords)
    _add_keywords_to(node, class_node.func.attr)
    _delete_keywords_from(node)

    gast.fix_missing_locations(node)

    return node


def update_args_of_func(node, dygraph_node, method_name):
    assert isinstance(node, gast.Call)
    if method_name not in ["__init__", "forward"]:
        raise ValueError(
            "The method name of class to update args should be '__init__' or 'forward'"
        )

316
    class_src = astor.to_source(gast.gast_to_ast(dygraph_node.func))
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
    import paddle.fluid as fluid
    if method_name == "__init__" or eval(
            "issubclass({}, fluid.dygraph.Layer)".format(class_src)):
        full_args = eval("inspect.getargspec({}.{})".format(class_src,
                                                            method_name))
        full_args_name = [
            arg_name for arg_name in full_args[0] if arg_name != "self"
        ]
    else:
        full_args_name = []
    added_keywords = []
    for idx, arg in enumerate(node.args):
        added_keywords.append(gast.keyword(arg=full_args_name[idx], value=arg))

    node.args = []
    node.keywords = added_keywords + node.keywords
333 334 335


def create_api_shape_node(tensor_shape_node):
336 337 338 339 340 341 342 343 344
    assert isinstance(tensor_shape_node,
                      (gast.Name, gast.Attribute, gast.Subscript))

    if isinstance(tensor_shape_node, gast.Name):
        api_shape_node = gast.Call(
            func=gast.parse('fluid.layers.shape').body[0].value,
            args=[tensor_shape_node],
            keywords=[])
        return api_shape_node
345 346 347 348 349 350 351 352 353 354 355 356

    if isinstance(tensor_shape_node, gast.Attribute):
        api_shape_node = gast.Call(
            func=gast.parse('fluid.layers.shape').body[0].value,
            args=[tensor_shape_node.value],
            keywords=[])
        return api_shape_node

    if isinstance(tensor_shape_node, gast.Subscript):
        result_node = copy.deepcopy(tensor_shape_node)
        result_node.value = create_api_shape_node(result_node.value)
        return result_node
357 358


359 360 361 362 363 364 365 366 367 368 369 370
def get_constant_variable_node(name, value, shape=[1], dtype='int64'):
    return gast.parse('%s = fluid.layers.fill_constant(%s, "%s", %s)' %
                      (name, str(shape), dtype, str(value)))


def get_attribute_full_name(node):
    assert isinstance(
        node,
        gast.Attribute), "Input non-Attribute node to get attribute full name"
    return astor.to_source(gast.gast_to_ast(node)).strip()


371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
def generate_name_node(name_ids, ctx=gast.Load()):
    """
    Generate list or gast.Tuple of ast.Name for Return statement.
    """
    if isinstance(name_ids, six.string_types):
        name_ids = [name_ids]
    if not isinstance(name_ids, (list, tuple, set)):
        raise TypeError('name_ids must be list or tuple or set, but received %s'
                        % type(type(name_ids)))
    gast_names = [
        gast.Name(
            id=name_id, ctx=ctx, annotation=None, type_comment=None)
        for name_id in name_ids
    ]
    if len(gast_names) == 1:
        name_node = gast_names[0]
    else:
        name_node = gast.Tuple(elts=gast_names, ctx=ctx)
    return name_node


def create_funcDef_node(nodes, name, input_args, return_name_ids):
    """
    Wrapper all statements of nodes into one ast.FunctionDef, which can be
    called by ast.Call.
    """
    nodes = copy.copy(nodes)
    # add return statement
399 400
    if return_name_ids:
        nodes.append(gast.Return(value=generate_name_node(return_name_ids)))
401 402
    else:
        nodes.append(gast.Return(value=None))
403 404 405 406 407 408 409 410 411 412
    func_def_node = gast.FunctionDef(
        name=name,
        args=input_args,
        body=nodes,
        decorator_list=[],
        returns=None,
        type_comment=None)
    return func_def_node


413 414 415 416 417 418 419 420
def index_in_list(array_list, item):
    try:
        return array_list.index(item)
    except ValueError:
        # Item not in array_list
        return -1


421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
def create_assign_node(name, node):
    """
    Creates a `gast.Assign` node by given name_id as target and node as value.
    """
    targets = generate_name_node(name, ctx=gast.Store())
    assign_node = gast.Assign(targets=[targets], value=node)
    return targets, assign_node


class RenameTransformer(gast.NodeTransformer):
    def __init__(self, node):
        assert isinstance(
            node, gast.AST), "RenameTransformer only accepts gast.AST as input"
        self.root = node
        self.old_name = ""
        self.new_name = ""

    def rename(self, old_name, new_name):
        self.old_name = old_name
        self.new_name = new_name
        self.visit(self.root)

    def visit_Name(self, node):
        self.generic_visit(node)
        if node.id == self.old_name:
            node.id = self.new_name
        return node

    def visit_Attribute(self, node):
        self.generic_visit(node)
        attr_full_name = get_attribute_full_name(node)
        if attr_full_name == self.old_name:
            new_name_node = gast.parse(self.new_name).body[0].value
            return new_name_node
        return node


458
def ast_to_func(ast_root, dyfunc, delete_on_exit=True):
459 460
    """
    Transform modified AST of decorated function into python callable object.
461 462
    TODO: If only decorate one of inner function instead of decorating the main
    function, the other inner functions are invisible for the decorated function.
463
    """
464

465
    def remove_if_exit(filepath):
466 467 468
        if os.path.exists(filepath):
            os.remove(filepath)

469
    source = ast_to_source_code(ast_root)
470
    import_fluid = "import paddle\nimport paddle.fluid as fluid\n"
471
    source = import_fluid + source
472

473 474 475 476 477 478 479 480 481 482 483
    if six.PY2:
        source = source.encode('utf-8')
        f = tempfile.NamedTemporaryFile(mode='w', suffix='.py', delete=False)
    else:
        f = tempfile.NamedTemporaryFile(
            mode='w', suffix='.py', delete=False, encoding='utf-8')
    with f:
        module_name = os.path.basename(f.name[:-3])
        f.write(source)

    if delete_on_exit:
484 485
        atexit.register(lambda: remove_if_exit(f.name))
        atexit.register(lambda: remove_if_exit(f.name[:-3] + ".pyc"))
486

487 488 489 490
    if six.PY2:
        module = imp.load_source(module_name, f.name)
    else:
        module = SourceFileLoader(module_name, f.name).load_module()
491
    func_name = dyfunc.__name__
W
WeiXin 已提交
492 493 494 495 496 497 498 499
    # The 'forward' or 'another_forward' of 'TranslatedLayer' cannot be obtained
    # through 'func_name'. So set the special function name '__i_m_p_l__'.
    if hasattr(module, '__i_m_p_l__'):
        callable_func = getattr(module, '__i_m_p_l__')
        callable_func.__name__ = func_name
    elif hasattr(module, func_name):
        callable_func = getattr(module, func_name)
    else:
500 501 502
        raise ValueError(
            'Function: %s doesn\'t exist in the Module transformed from AST.' %
            func_name)
503 504 505 506 507 508 509 510 511 512 513 514 515
    # After transform dygraph function into callable_func saved in tmp file,
    # it lost the global variables from imported statements or defined in source file.
    # Recovers the necessary variables by `__globals__`.
    recover_globals_attribute(dyfunc, callable_func)

    return callable_func, f.name


def recover_globals_attribute(src_obj, dst_obj):
    attr_name = '__globals__'

    src_globals = getattr(src_obj, attr_name, {})
    dst_globals = getattr(dst_obj, attr_name, {})
516

517
    for k, v in six.iteritems(src_globals):
518 519 520
        # ignore builtin attribute.
        if not (k.startswith('__') and k.endswith('__')):
            dst_globals[k] = v
521 522


523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
def func_to_source_code(function, dedent=True):
    """
    Transforms function into raw string of source code.
    """
    if not (inspect.isfunction(function) or inspect.ismethod(function)):
        raise TypeError(
            "The type of 'function' should be a function or method, but received {}.".
            format(type(function).__name__))
    source_code = inspect.getsource(function)
    if dedent:
        source_code = textwrap.dedent(source_code)

    return source_code


538 539
def ast_to_source_code(ast_node):
    """
540
    Transforms ast node into source code.
541 542 543 544 545 546 547 548 549
    """
    if not isinstance(ast_node, (gast.AST, ast.AST)):
        raise TypeError(
            "Type of ast_root should be gast.AST or ast.AST, but received %s." %
            type(ast_node))
    if isinstance(ast_node, gast.AST):
        ast_node = gast.gast_to_ast(ast_node)
    source_code = astor.to_source(ast_node)
    return source_code
L
liym27 已提交
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591


def is_candidate_node(node):
    """
    Nodes with specified type will be dependent on tensor.
    """
    is_compare_node = isinstance(node, (gast.Compare, gast.BoolOp, gast.UnaryOp,
                                        gast.For, gast.If, gast.While))
    # TODO(Aurelius84): `.numpy()` may be an customized function,
    # and should consider a more elegant way to solve this problem.
    has_numpy_attr = ".numpy()" in ast_to_source_code(node)
    return is_compare_node or has_numpy_attr


def compare_with_none(node):
    """
    Whether the comparator of `gast.Compare` node is `None`.
    """
    if isinstance(node, gast.Compare):
        for child in [node.left, node.comparators]:
            # node.comparators is a list.
            if isinstance(child, list):
                child = child[0]
            if (isinstance(child, gast.Constant) and child.value is None) or (
                    isinstance(child, gast.Name) and child.id == 'None'):
                return True
    return False


class IsControlFlowVisitor(gast.NodeVisitor):
    """
    Judge whether the ast_node of control flow from Dygraph code dependent on paddle Tensor.
    `ast_node` can be gast.If, gast.For, gast.While, gast.If.test(gast.Compare, gast.BoolOp, gast.UnaryOp).

    If returns True,
    gast.If.test must meet at least one of the following requirements:
        1. involves at least one var whose type is Tensor.
        2. the Tensor var calls `.numpy()[]` interface or Tensor.shape is [1].
        3. involves Tensor.shape[i] and the shape[i] is unknown in compile time.
    gast.While must meet at least one of the requirements 1 to 5:
        4. has `break` statement.
        5. has `continue` statement.
592
    gast.For must meet at least one of the requirements 4 to 8:
L
liym27 已提交
593
        6. calls `range` function in `for` statement and the argument of range is Tensor.
594 595
        7. calls `enumerate` function in `for` statement and the argument of enumerate is Tensor.
        8. the iterable varaible in `for` statement is Tensor.
L
liym27 已提交
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
        TODO: Support non-range case

    The following examples should not be considered as control_flow_if:
        1. `if Tensor_var` or `if Tensor_var is None`
        2. if Tensor.shape[i] is determined with fixed value (not -1 or None)

    Note: pred in ConditionalBlock require variable, which means all vars should be Tensor
          or transformed into Tensor, like fill_constant(shape=[1], dtype='int32', value=Tensor.shape[i]).

    TODO: 1. need to deal with `tensor.shape[i]` which need to eval the data of shape[i],
             because reshape_op may be called before this statement.
    """

    def __init__(self,
                 ast_node,
                 static_analysis_visitor=None,
                 node_var_type_map=None):
        assert isinstance(
            ast_node, gast.AST
        ), "Type of input node should be gast.AST, but received %s." % type(
            ast_node)
        self.ast_root = ast_node
        if static_analysis_visitor is None:
            from .static_analysis import StaticAnalysisVisitor
            static_analysis_visitor = StaticAnalysisVisitor(ast_node)
        self.static_analysis_visitor = static_analysis_visitor
        self.node_to_wrapper_map = self.static_analysis_visitor.get_node_to_wrapper_map(
        )
        self.node_var_type_map = node_var_type_map

        self.is_control_flow_num = 0
        self._compare_node_tenor_set = set()

    def transform(self):
        node = self.ast_root
631 632 633 634 635 636 637 638
        if isinstance(node, gast.If):
            self._visit_If(node)
        elif isinstance(node, gast.For):
            self._visit_For(node)
        elif isinstance(node, gast.While):
            self._visit_While(node)
        else:
            self.visit(node)
L
liym27 已提交
639 640 641 642 643 644 645 646 647
        return self.is_control_flow_num > 0

    def _visit_If(self, node):
        assert isinstance(node, gast.If)
        self.visit(node.test)
        return

    def _visit_For(self, node):
        assert isinstance(node, gast.For)
648 649 650 651 652 653 654 655 656 657 658 659 660 661
        if isinstance(node.iter, gast.Call):
            # for in range(var[0]|var.numpy()[0]) or for in enumerate(var|var.numpy())
            if isinstance(node.iter.func, gast.Name):
                if node.iter.func.id == "range" or node.iter.func.id == "enumerate":
                    for arg in node.iter.args:
                        self.visit(arg)
                else:
                    return
            # for in var.numpy()
            elif isinstance(node.iter.func, gast.Attribute):
                if node.iter.func.attr == 'numpy':
                    self._visit_Call(node.iter)
                else:
                    return
662 663
            else:
                return
664 665 666
        elif isinstance(node.iter, gast.Name):
            # for in var
            self.visit(node.iter)
667
        else:
L
liym27 已提交
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
            return

        for child_node in gast.walk(node):
            if isinstance(child_node, (gast.Continue, gast.Break)):
                self._visit_break_continue(child_node)
        return

    def _visit_While(self, node):
        assert isinstance(node, gast.While)
        test = node.test
        self.generic_visit(test)
        for child_node in gast.walk(node):
            if isinstance(child_node, (gast.Continue, gast.Break)):
                self._visit_break_continue(child_node)
        return

    def _visit_break_continue(self, node):
        assert isinstance(node, (gast.Break, gast.Continue))
        wrapper_node = self.node_to_wrapper_map.get(node)
        if not wrapper_node:
            # Transformed node is not in node_to_wrapper_map
            return

        while wrapper_node.parent:
            parent_node = wrapper_node.parent.node
            if isinstance(parent_node, (gast.For, gast.While)):
                if parent_node is self.ast_root:
                    self.is_control_flow_num += 1
                    return
                else:
                    return

            wrapper_node = wrapper_node.parent

        return

    def visit_BoolOp(self, node):
        for i, child in enumerate(node.values):
706
            self.visit(child)
L
liym27 已提交
707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
        return node

    def visit_Compare(self, node):
        pre_control_flow_num = self.is_control_flow_num
        if not compare_with_none(node):
            self.generic_visit(node)
            for child in gast.walk(node):
                if isinstance(child, gast.Subscript):
                    self._visit_Subscript(child)
        if self.is_control_flow_num > pre_control_flow_num:
            self._compare_node_tenor_set.add(node)
        return node

    def _visit_Subscript(self, node):
        self.generic_visit(node)
        if hasattr(node, 'value') and isinstance(node.value, gast.Call):
            self._visit_Call(node.value)
        return node

    def _visit_Call(self, node):
        assert isinstance(node, gast.Call)
        if isinstance(node.func, gast.Attribute):
            attr_node = node.func
            if attr_node.attr == 'numpy':
                self.is_control_flow_num += 1

    def visit_Call(self, node):
        self._visit_Call(node)
        if is_paddle_api(node):
            self.is_control_flow_num += 1
        return node

    def visit_Name(self, node):
        if self._is_node_with_tensor(node, node.id):
            self.is_control_flow_num += 1
        return node

    def visit_Constant(self, node):
        if self._is_node_with_tensor(node, node.value):
            self.is_control_flow_num += 1
        return node

    def _is_node_with_tensor(self, node, name_id):
        from paddle.fluid.dygraph.dygraph_to_static.static_analysis import NodeVarType

        # Look up the node_var_type_map by name_id.
        if self.node_var_type_map:
            if name_id and isinstance(name_id, six.string_types):
                var_type = self.node_var_type_map.get(name_id, None)
756
                if var_type and var_type & NodeVarType.TENSOR_TYPES:
L
liym27 已提交
757 758
                    return True
        # if not found, look up the node_to_wrapper_map by node.
759
        wrapper_node = self.node_to_wrapper_map.get(node, None)
L
liym27 已提交
760
        if wrapper_node is not None:
761
            if wrapper_node.node_var_type & NodeVarType.TENSOR_TYPES:
L
liym27 已提交
762 763 764 765 766 767
                return True

        return False

    def get_compare_nodes_with_tensor(self):
        return self._compare_node_tenor_set
768 769 770 771


class NameNodeReplaceTransformer(gast.NodeTransformer):
    """
772
    This class replaces specified gast.Name node by replace_node.
773 774 775 776
    """

    def __init__(self, root_node, target_name, replace_node):
        assert isinstance(target_name, str)
777 778 779 780 781 782 783 784 785 786 787 788 789 790

        # NOTE(liym27):
        # Use gast.Name to replace gast.Name, otherwise, errors may occur.
        #
        # For examples:
        # If using a gast.Subscript to replace gast.Name, and the original gast.Name
        # is in the arguments of FunctionDef, an exception will be raised.
        #
        # ```
        # def func(x[i])) # x[i] can not be a argument
        #    # ...
        # ```

        assert isinstance(replace_node, gast.Name)
791 792 793 794 795 796 797 798 799 800 801
        self.target_name = target_name
        self.replace_node = replace_node

        self.visit(root_node)

    def visit_Name(self, node):
        if node.id == self.target_name:
            return self.replace_node
        return node


802
class ForNodeVisitor(object):
803
    """
804
    This class parses python for statement, get transformed 3 statement components of for node
805 806 807 808 809 810 811 812
    three key statements:
        1). init_stmts: list[node], prepare nodes of for loop, may not only one
        2). cond_stmt: node, condition node to judge whether continue loop
        3). body_stmts: list[node], updated loop body, sometimes we should change
            the original statement in body, not just append new statement

    In this process, the semantics of for does not change.

813
    Now only can parse 3 type statements (Here var is VarBase(Tensor) or python variable):
814 815 816
        1). for x in range(var[*]|var.numpy()[*])
        2). for x in var|var.numpy()
        3). for i, x enumerate(var|var.numpy())
817 818 819 820 821
    """

    def __init__(self, for_node):
        assert isinstance(
            for_node, gast.For
822
        ), "Input node for the initialization of ForNodeVisitor is not gast.For node."
823 824 825 826 827 828 829 830 831 832 833 834 835
        # 1. original for node
        self.node = for_node

        # 2. gast.For node main parts
        self.target = for_node.target
        # NOTE: type may be Node or list[Node]
        self.iter_args = for_node.iter if self.is_for_iter(
        ) else for_node.iter.args
        self.body = for_node.body

        # 3. key shared node or names
        # - x:
        #   - for x in range(***)
836 837
        #   - for x in var|var.numpy()
        #   - for i, x enumerate(var|var.numpy())
838 839 840
        self.iter_var_name = self._get_iter_var_name()

        # - created index var to slice Variable: __for_loop_var_index_0
841 842
        #   - for x in var|var.numpy()
        #   - for i, x enumerate(var|var.numpy())
843 844
        self.iter_idx_name = unique_name.generate(FOR_ITER_INDEX_PREFIX)

845
        # - created shape var to build loop condition: __for_loop_var_len_0
846 847 848
        #   - for x in var|var.numpy()
        #   - for i, x enumerate(var|var.numpy())
        #   - for x in var
849
        self.iter_var_len_name = unique_name.generate(FOR_ITER_VAR_LEN_PREFIX)
850

851 852 853
        # - var.numpy()/var
        #   - for x in var|var.numpy()
        #   - for i, x enumerate(var|var.numpy())
854 855 856
        self.iter_node = self._get_iter_node()

        # - enumeate i:
857
        #   - for i, x enumerate(var|var.numpy())
858 859 860 861 862 863 864 865 866 867 868 869 870 871
        self.enum_idx_name = self._get_enum_idx_name()

        # - range/enumerate args length
        self.args_length = None

    def parse(self):
        self._args_check()
        if self.is_for_range_iter():
            return self._parse_for_range_stmts()
        elif self.is_for_iter():
            return self._parse_for_stmts()
        elif self.is_for_enumerate_iter():
            return self._parse_for_enumerate_stmts()
        else:
872
            return None
873 874

    def is_for_range_iter(self):
875 876 877
        return isinstance(self.node.iter, gast.Call) and isinstance(
            self.node.iter.func,
            gast.Name) and self.node.iter.func.id == "range"
878 879

    def is_for_iter(self):
880
        if isinstance(self.node.iter, (gast.Name, gast.Attribute)):
881 882 883 884 885
            return True
        elif isinstance(self.node.iter, gast.Call) and isinstance(
                self.node.iter.func,
                gast.Attribute) and self.node.iter.func.attr == 'numpy':
            return True
886 887
        elif isinstance(self.node.iter, gast.Subscript):
            return True
888 889
        else:
            return False
890 891

    def is_for_enumerate_iter(self):
892 893 894
        return isinstance(self.node.iter, gast.Call) and isinstance(
            self.node.iter.func,
            gast.Name) and self.node.iter.func.id == "enumerate"
895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921

    def _args_check(self):
        if self.is_for_range_iter():
            self.args_length = len(self.iter_args)
            assert self.args_length >= 1 and self.args_length <= 3, "range() function takes 1 to 3 arguments"
        elif self.is_for_enumerate_iter():
            self.args_length = len(self.iter_args)
            assert self.args_length >= 1 and self.args_length <= 2, "enumerate() function takes 1 to 2 arguments"
        else:
            self.args_length = None

    def _parse_for_range_stmts(self):
        init_stmts = []
        init_stmts.append(self._build_index_init_node())

        compare_node = self._build_compare_node()
        step_node = self._build_step_node()
        cond_stmt = self._build_cond_stmt(step_node, compare_node)

        body_stmts = self.body
        body_stmts.append(self._build_index_increase_node(step_node))

        return init_stmts, cond_stmt, body_stmts

    def _parse_for_stmts(self):
        init_stmts = []
        init_stmts.append(self._build_index_init_node())
922
        init_stmts.append(self._build_var_len_assign_node())
923 924 925 926 927 928

        compare_node = self._build_compare_node()
        step_node = self._build_step_node()
        cond_stmt = self._build_cond_stmt(step_node, compare_node)

        body_stmts = self.body
929 930 931 932 933

        # NOTE(liym27): Here add a gast.Assign, and the target of it is gast.Name.
        # In NameNodeReplaceTransformer, using gast.Name to replace gast.Name is safe.
        target_node, assign_node = self._build_assign_var_slice_node()
        body_stmts[0:0] = [assign_node]
934 935
        for body_node in body_stmts:
            NameNodeReplaceTransformer(body_node, self.iter_var_name,
936
                                       target_node)
937 938 939 940 941 942 943
        body_stmts.append(self._build_index_increase_node(step_node))

        return init_stmts, cond_stmt, body_stmts

    def _parse_for_enumerate_stmts(self):
        init_stmts = []
        init_stmts.append(self._build_index_init_node())
944
        init_stmts.append(self._build_var_len_assign_node())
945 946 947 948 949 950 951
        init_stmts.append(self._build_enum_init_node())

        compare_node = self._build_compare_node()
        step_node = self._build_step_node()
        cond_stmt = self._build_cond_stmt(step_node, compare_node)

        body_stmts = self.body
952 953 954

        target_node, assign_node = self._build_assign_var_slice_node()
        body_stmts[0:0] = [assign_node]
955 956
        for body_node in body_stmts:
            NameNodeReplaceTransformer(body_node, self.iter_var_name,
957 958
                                       target_node)

959 960 961 962 963 964 965 966
        body_stmts.append(self._build_index_increase_node(step_node))
        body_stmts.append(self._build_enum_increase_node())

        return init_stmts, cond_stmt, body_stmts

    def _build_index_init_node(self):
        if self.is_for_range_iter():
            if self.args_length == 1:
967
                index_init_value_str = '0'
968
            else:
969 970 971 972
                index_init_value_str = ast_to_source_code(self.iter_args[
                    0]).strip()

            index_init_var_name = self.iter_var_name
973
        else:
974 975 976 977 978 979 980 981
            index_init_value_str = '0'
            index_init_var_name = self.iter_idx_name

        index_init_node_source_str = "{target} = {value}".format(
            target=index_init_var_name, value=index_init_value_str)

        index_init_node = gast.parse(index_init_node_source_str).body[0]

982 983
        return index_init_node

984 985 986 987 988 989 990
    def _build_var_len_assign_node(self):
        # get the length of iterable variable
        if isinstance(self.iter_node, gast.Call) and isinstance(
                self.iter_node.func,
                gast.Attribute) and self.iter_node.func.attr == 'numpy':
            iter_var_name = ast_to_source_code(self.iter_node.func.value).strip(
            )
991
        else:
992 993
            iter_var_name = ast_to_source_code(self.iter_node).strip()

994
        convert_len_node_source_str = '{} = paddle.jit.dy2static.convert_len({})'.format(
995 996 997 998 999
            self.iter_var_len_name, iter_var_name)

        convert_len_node = gast.parse(convert_len_node_source_str).body[0]

        return convert_len_node
1000 1001 1002

    def _build_enum_init_node(self):
        if self.is_for_enumerate_iter() and self.args_length != 1:
1003 1004 1005 1006 1007 1008 1009
            init_value_str = ast_to_source_code(self.iter_args[1]).strip()
        else:
            init_value_str = '0'

        enum_init_node_source_str = "{} = {}".format(self.enum_idx_name,
                                                     init_value_str)
        enum_init_node = gast.parse(enum_init_node_source_str).body[0]
1010 1011 1012 1013 1014 1015 1016
        return enum_init_node

    def _build_compare_node(self):
        if self.is_for_range_iter():
            compare_node = self.iter_args[
                0] if self.args_length == 1 else self.iter_args[1]
        else:
1017 1018 1019 1020 1021
            compare_node = gast.Name(
                id=self.iter_var_len_name,
                ctx=gast.Load(),
                annotation=None,
                type_comment=None)
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
        return compare_node

    def _build_step_node(self):
        if self.is_for_range_iter():
            step_node = self.iter_args[
                2] if self.args_length == 3 else gast.Constant(
                    value=1, kind=None)
        else:
            step_node = gast.Constant(value=1, kind=None)
        return step_node

    def _build_cond_stmt(self, step_node, compare_node):
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
        if not isinstance(step_node, (gast.Constant, gast.UnaryOp)):
            raise NotImplementedError(
                "Dynamic-to-Static only supports the step value is a constant or negative constant in 'for-range' statements, "
                "such as '2', '-3'. But received: '{}'. Please fix code to be compatible with Dynamic-to-Static."
                .format(ast_to_source_code(step_node).strip()))

        if isinstance(step_node, gast.UnaryOp) or step_node.value < 0:
            # eg:
            # range(max, min, -2)
            # ->
            # i > min
            return gast.Compare(
1046 1047 1048 1049 1050 1051
                left=gast.Name(
                    id=self.iter_var_name
                    if self.is_for_range_iter() else self.iter_idx_name,
                    ctx=gast.Load(),
                    annotation=None,
                    type_comment=None),
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
                ops=[gast.Gt()],
                comparators=[compare_node])
        else:
            # eg:
            # range(min, max, 2)
            # ->
            # i < max
            return gast.Compare(
                left=gast.Name(
                    id=self.iter_var_name
                    if self.is_for_range_iter() else self.iter_idx_name,
                    ctx=gast.Load(),
                    annotation=None,
                    type_comment=None),
                ops=[gast.Lt()],
                comparators=[compare_node])
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079

    def _build_index_increase_node(self, step_node):
        return gast.AugAssign(
            target=gast.Name(
                id=self.iter_var_name
                if self.is_for_range_iter() else self.iter_idx_name,
                ctx=gast.Store(),
                annotation=None,
                type_comment=None),
            op=gast.Add(),
            value=step_node)

1080 1081
    def _build_assign_var_slice_node(self):
        var_slice_node = gast.Subscript(
1082 1083 1084 1085 1086 1087
            value=self.iter_node,
            slice=gast.Index(value=gast.Name(
                id=self.iter_idx_name,
                ctx=gast.Load(),
                annotation=None,
                type_comment=None)),
1088 1089 1090 1091 1092
            ctx=gast.Load(), )
        new_iter_var_name = unique_name.generate(FOR_ITER_VAR_NAME_PREFIX)
        target_node, assign_node = create_assign_node(new_iter_var_name,
                                                      var_slice_node)
        return target_node, assign_node
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124

    def _build_enum_increase_node(self):
        return gast.AugAssign(
            target=gast.Name(
                id=self.enum_idx_name,
                ctx=gast.Store(),
                annotation=None,
                type_comment=None),
            op=gast.Add(),
            value=gast.Constant(
                value=1, kind=None))

    def _get_iter_var_name(self):
        if self.is_for_range_iter():
            return self.target.id
        elif self.is_for_iter():
            return self.target.id
        elif self.is_for_enumerate_iter():
            return self.target.elts[1].id
        return None

    def _get_iter_node(self):
        if self.is_for_iter():
            return self.iter_args
        elif self.is_for_enumerate_iter():
            return self.iter_args[0]
        return None

    def _get_enum_idx_name(self):
        if self.is_for_enumerate_iter():
            return self.target.elts[0].id
        return None
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206


class SplitAssignTransformer(gast.NodeTransformer):
    """
    This class transforms sequence assignments and multi-target assignments to normal assignments.
    """

    def __init__(self, ast_node):
        assert isinstance(ast_node, gast.AST)
        self.ast_root = ast_node

    def transform(self):
        self.visit(self.ast_root)

    def visit_Assign(self, node):
        target_nodes = node.targets
        if len(target_nodes) == 1:
            node = self._parse_sequence_assign(node)
        else:
            node = self._parse_multi_target_assign(node)
        return node

    def _parse_sequence_assign(self, node):
        """
        a, b = c, d
        ->
        a = c
        b = d
        """
        assert isinstance(node, gast.Assign)

        target_nodes = node.targets
        value_node = node.value
        if not isinstance(target_nodes[0], (gast.List, gast.Tuple)):
            return node
        if not isinstance(value_node, (gast.List, gast.Tuple)):
            return node

        targets = node.targets[0].elts
        values = node.value.elts
        if len(targets) != len(values):
            return node

        new_nodes = []
        for target, value in zip(targets, values):
            assign_node = gast.Assign(targets=[target], value=value)
            new_nodes.append(assign_node)

        return new_nodes

    def _parse_multi_target_assign(self, node):
        """
         Example 1:
         a = b = c
         ->
         b = c
         a = b

         Example 2:
         a, b = c, d = x
         ->
         c,d = x
         a = c
         b = d
         """
        assert isinstance(node, gast.Assign)

        target_nodes = node.targets
        value_node = node.value
        new_nodes = []
        for target in reversed(target_nodes):
            assign_node = gast.Assign(targets=[target], value=value_node)
            # NOTE: Because assign_node can be sequence assign statement like `a,b = c,d`,
            # it's necessary to visit this new assign_node
            parsed_node = self.visit_Assign(assign_node)
            if not isinstance(parsed_node, list):
                parsed_node = [parsed_node]

            new_nodes.extend(parsed_node)
            value_node = target

        return new_nodes
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222


# NOTE: inspect.unwrap() exits in PY3 but not in PY2.
def unwrap(func):
    """
    Returns the object wrapped by decorators.
    """

    def _is_wrapped(f):
        return hasattr(f, '__wrapped__')

    unwrapped_f = func
    while (_is_wrapped(unwrapped_f)):
        unwrapped_f = unwrapped_f.__wrapped__

    return unwrapped_f
1223 1224


1225
def input_specs_compatible(src_input_specs, desired_input_specs):
1226 1227 1228 1229 1230 1231
    """
    Returns True if the two input specs are compatible, otherwise False.

    args:
        src_input_spec (list[InputSpec]|tuple(InputSpec)): list/tuple of
            paddle.static.InputSpec
1232
        desired_input_specs (list[InputSpec]|tuple(InputSpec)): list/tuple of
1233 1234 1235
            paddle.static.InputSpec
    """
    len_specs = len(src_input_specs)
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
    if len_specs != len(desired_input_specs):
        # NOTE(chenweihang): if the input_spec of jit.save is a subset of
        # input_spec of to_static, also compatible 
        for spec in src_input_specs:
            if spec not in desired_input_specs:
                return False
    else:
        for i in range(len_specs):
            src_shape = src_input_specs[i].shape
            other_shape = desired_input_specs[i].shape
            len_shape = len(src_shape)
            if len_shape != len(other_shape):
                return False
            for j in range(len_shape):
                if src_shape[j] is None or src_shape[j] < 0:
                    continue
                if other_shape[j] is None or other_shape[j] < 0:
                    continue
                if src_shape[j] != other_shape[j]:
                    return False

            src_dtype = convert_dtype(src_input_specs[i].dtype)
            other_dtype = convert_dtype(desired_input_specs[i].dtype)
            if src_dtype != other_dtype:
1260 1261 1262
                return False

    return True