spawn.py 22.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function, division

import multiprocessing
import os
import signal
import six
import sys
import warnings

24 25 26
from paddle.distributed.utils import _print_arguments
from paddle.distributed.utils import _prepare_trainer_env
from paddle.distributed.utils import get_host_name_ip
X
xiongkun 已提交
27 28
from paddle.distributed.cloud_utils import get_cluster_and_pod, _get_trainers_num
from paddle.distributed.fleet.launch import get_cluster_from_args
29
from paddle.distributed.fleet.cloud_utils import use_paddlecloud
X
xiongkun 已提交
30
from paddle.distributed.fleet.launch_utils import DeviceMode, check_backend, block_windows_and_macos
31 32 33 34
from paddle.device import get_device

# deprecated module import
from paddle.fluid import core
35
from paddle.fluid.framework import _cpu_num, set_flags
36

37 38
__all__ = []

39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58

class ParallelEnvArgs(object):
    def __init__(self):
        # Paddle cluster nodes ips, such as 192.168.0.16,192.168.0.17..
        self.cluster_node_ips = None

        # The current node ip.
        self.node_ip = None

        # whether to use paddlecloud platform to run your multi-process job.
        # If false, no need to set this argument.
        self.use_paddlecloud = None

        # The trainer's started port on a single node
        self.started_port = None

        # Print the config or not
        self.print_config = True

        # It's for gpu training and the training process will run 
59
        # on the selected_devices, each process is bound to a single GPU. 
60 61
        # And if it's not set, this module will use all the gpu cards 
        # for training.
62
        self.selected_devices = None
63 64 65 66 67 68 69 70 71 72 73


def _py_supported_check():
    if not sys.version_info >= (3, 4):
        raise RuntimeError(
            "Use `paddle.distributed.spawn` to start parallel training "
            "requires python version greater than 3.4, if your python "
            "is lower than this version, please use "
            "`paddle.distributed.launch` instead.")


74
def _options_valid_check(options):
75
    # `print_config` keeped as a debug options, not show to users
X
xiongkun 已提交
76 77 78
    supported_options = [
        'start_method', 'ips', 'gpus', 'xpus', 'print_config', 'backend'
    ]
79
    deprecated_options = [
80
        'selected_devices', 'started_port', 'cluster_node_ips', 'node_ip',
81
        'use_paddlecloud'
82 83 84
    ]
    for key in options:
        if key not in supported_options:
85 86 87 88 89 90 91 92 93 94 95
            if key in deprecated_options:
                warnings.warn(
                    "The config option (%s) of `paddle.distributed.spawn` is deprecated. "
                    "Please use the latest config options stated in the `spawn` API documentation."
                    % key, DeprecationWarning)
            else:
                raise ValueError(
                    "The config option (%s) of `paddle.distributed.spawn` is not supported."
                    % key)


96 97 98 99 100 101
def _get_default_nprocs():
    device = get_device()
    if 'gpu' in device:
        return core.get_cuda_device_count()
    elif 'xpu' in device:
        return core.get_xpu_device_count()
X
xiongkun 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
    elif 'cpu' in device:
        return multiprocessing.cpu_count()
    else:
        raise RuntimeError(
            "`paddle.distributed.spawn` does not support parallel training on device `{}` now.".
            format(device))


def _get_default_backend():
    device = get_device()
    if 'gpu' in device:
        return 'nccl'
    elif 'xpu' in device:
        return 'bkcl'
    elif 'cpu' in device:
        return 'gloo'
118 119 120 121 122 123
    else:
        raise RuntimeError(
            "`paddle.distributed.spawn` does not support parallel training on device `{}` now.".
            format(device))


124 125 126 127 128 129 130 131
def _get_node_ip(ips):
    node_ip = None
    node_ips = [x.strip() for x in ips.split(',')]
    if len(node_ips) == 1:
        node_ip = node_ips[0]
    else:
        _, node_ip = get_host_name_ip()
    return node_ip
132 133


134
def _get_subprocess_env_list(nprocs, options):
X
xiongkun 已提交
135 136 137 138 139 140 141 142 143 144
    # NOTE (xiongkun03) Why put backend deduction  here ? 
    # Becase _get_subprocess_env_list is used by many testcases. 
    # So for campability, we put backend deduction here 

    # logic for handle backend option
    if 'backend' not in options or options['backend'] == 'auto':
        options['backend'] = _get_default_backend()
    check_backend(options['backend'])
    block_windows_and_macos(options['backend'])

145 146 147 148 149 150
    # contruct processes env list
    processes_env_list = []

    # get args from kwargs
    args = ParallelEnvArgs()

151 152
    # deal with `ips`
    args.cluster_node_ips = options.get('ips', None)
153
    if args.cluster_node_ips is None:
154 155 156
        args.cluster_node_ips = options.get('cluster_node_ips', None)
        if args.cluster_node_ips is None:
            args.cluster_node_ips = "127.0.0.1"
157

158 159
    # deal with `gpus` or `xpus`
    # set default selected devices(gpus or xpus)
160
    # e.g. if the nprocs is 4, the selected gpus is "0,1,2,3"
161 162 163
    # NOTE(chenweihang): [ why not use FLAGS_selected_gpus or FLAGS_selected_xpus directly? ]
    # because the FLAGS_selected_gpus or FLAGS_selected_xpus may be used in other place,
    # if we set FLAGS_selected_gpus or FLAGS_selected_xpus to be `0,1,2,3`, it may cause error
164
    # when using `ParallelEnv`
165
    # NOTE(chenweihang): use absolute gpu or xpu card id
X
xiongkun 已提交
166
    if options['backend'] == 'nccl':
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
        args.selected_devices = options.get('gpus', None)
        if args.selected_devices is None:
            args.selected_devices = options.get('selected_devices', None)
        env_devices = os.getenv("CUDA_VISIBLE_DEVICES", None)
        if env_devices is None or env_devices == "":
            env_devices_list = [
                str(x) for x in six.moves.range(core.get_cuda_device_count())
            ]
        else:
            env_devices_list = env_devices.split(',')
        if args.selected_devices is None:
            if len(env_devices_list) < nprocs:
                raise RuntimeError(
                    "the number of visible devices(%d) is less than the number "
                    "of spawn processes(%d), please ensure that the correct "
                    "`nprocs` argument is passed or the environment variable "
                    "`CUDA_VISIBLE_DEVICES` is correctly configured." %
                    (len(env_devices_list), nprocs))
            args.selected_devices = ",".join(
                [str(env_devices_list[x]) for x in range(0, nprocs)])
        else:
            selected_device_list = args.selected_devices.split(',')
            if len(selected_device_list) != nprocs:
                raise ValueError(
                    "The number of selected devices(%s) is not equal to "
                    "the number of spawn processes(%d), please ensure that the "
                    "correct `nprocs` and `gpus` arguments are passed." %
                    (len(selected_device_list), nprocs))
            for card_id in selected_device_list:
                if card_id not in env_devices_list:
                    raise ValueError("The selected gpu card %s cannot found in "
                                     "CUDA_VISIBLE_DEVICES (%s)." %
                                     (card_id, ",".join(env_devices_list)))

X
xiongkun 已提交
201
    elif options['backend'] == 'bkcl':
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
        args.selected_devices = options.get('xpus', None)
        if args.selected_devices is None:
            args.selected_devices = options.get('selected_devices', None)
        env_devices = os.getenv("XPU_VISIBLE_DEVICES", None)
        if env_devices is None or env_devices == "":
            env_devices_list = [
                str(x) for x in six.moves.range(core.get_xpu_device_count())
            ]
        else:
            env_devices_list = env_devices.split(',')
        if args.selected_devices is None:
            if len(env_devices_list) < nprocs:
                raise RuntimeError(
                    "the number of visible devices(%d) is less than the number "
                    "of spawn processes(%d), please ensure that the correct "
                    "`nprocs` argument is passed or the environment variable "
                    "`XPU_VISIBLE_DEVICES` is correctly configured." %
                    (len(env_devices_list), nprocs))
            args.selected_devices = ",".join(
                [str(env_devices_list[x]) for x in range(0, nprocs)])
        else:
            selected_device_list = args.selected_devices.split(',')
            if len(selected_device_list) != nprocs:
                raise ValueError(
                    "The number of selected devices(%s) is not equal to "
                    "the number of spawn processes(%d), please ensure that the "
                    "correct `nprocs` and `xpus` arguments are passed." %
                    (len(selected_device_list), nprocs))
            for card_id in selected_device_list:
                if card_id not in env_devices_list:
                    raise ValueError("The selected xpu card %s cannot found in "
                                     "XPU_VISIBLE_DEVICES (%s)." %
                                     (card_id, ",".join(env_devices_list)))
X
xiongkun 已提交
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
    elif options['backend'] == 'gloo':
        # TODO check gpu / xpu flag must not exist
        warnings.warn(
            "Your model will be trained under CPUONLY mode by using GLOO,"
            "because CPUPlace is specified manually or your installed PaddlePaddle only support CPU Device."
        )
        args.paddle_cpuonly = True
        args.selected_devices = None
        args.ips = args.cluster_node_ips
        assert options.get(
            'use_paddlecloud',
            None) is None, "CPUONLY spawn doesn't support use paddle cloud"
        assert len(
            args.cluster_node_ips.split(',')
        ) <= 1, "CPUONLY spawn only support single trainer, that is len(ips)=1, but got %s."
        assert _get_trainers_num(
        ) == 1, "CPUONLY spawn doesn't support multi-trainer"
252

253 254 255 256 257
    # set other inner args
    args.node_ip = options.get('node_ip', None)
    if args.node_ip is None:
        args.node_ip = _get_node_ip(args.cluster_node_ips)

258 259
    args.started_port = options.get('started_port', None)

260 261 262 263 264
    args.use_paddlecloud = options.get('use_paddlecloud', None)
    if args.use_paddlecloud is None:
        args.use_paddlecloud = use_paddlecloud()

    # get cluster and pod config
X
xiongkun 已提交
265 266 267 268 269 270
    if options['backend'] == 'gloo':
        devices_per_proc = [x for x in range(0, nprocs)]
        cluster, pod = get_cluster_from_args(args, DeviceMode.CPU,
                                             devices_per_proc)
    else:
        cluster, pod = get_cluster_and_pod(args)
271 272 273

    # prepare subprocess env list
    for trainer in pod.trainers:
X
xiongkun 已提交
274 275
        processes_env_list.append(
            _prepare_trainer_env(cluster, trainer, options['backend']))
276

277 278
    # [Debug] print config
    args.print_config = options.get('print_config', False)
279 280 281 282 283 284 285
    if args.print_config:
        _print_arguments(args)

    return processes_env_list


def _remove_risky_env():
286
    # remove useless env vars
287 288 289 290 291
    # no copy, each process will hold env vars itself
    os.environ.pop("http_proxy", None)
    os.environ.pop("https_proxy", None)


X
xiongkun 已提交
292
def _set_trainer_env(env_dict, backend):
293
    # NOTE(chenweihang): [ Why need set FLAGS_selected_gpus or FLAGS_selected_xpus here? ]
294 295
    # When the child process starts, it will inherit the configuration of the 
    # main process and set the FLAGS once, but the environment variable has 
296
    # not been set at this time, which leads to the FLAGS_selected_gpus or FLAGS_selected_xpus
297
    # is keep same with mainprocess(usually empty), so manually update the flags here
X
xiongkun 已提交
298 299 300 301 302

    # NOTE(xiongkun): why put backend here?  because if gloo, we shouldn't set FLAGS_selectedXXX
    #

    if backend == 'nccl':
303
        set_flags({'FLAGS_selected_gpus': env_dict['FLAGS_selected_gpus']})
X
xiongkun 已提交
304
    elif backend == 'bkcl':
305 306
        set_flags({'FLAGS_selected_xpus': env_dict['FLAGS_selected_xpus']})
    else:
X
xiongkun 已提交
307 308 309 310 311
        #NOTE(xiongkun) why not raise Error ? 
        # So far, we added support for CPU parallel, and will be applied when paddle is not 
        # compiled with cuda or xp. just do nothing.
        pass

312 313 314 315
    for var_name in env_dict:
        os.environ[var_name] = env_dict[var_name]


X
xiongkun 已提交
316
def _func_wrapper(func, args, error_queue, return_queue, env_dict, backend):
317 318 319
    try:
        # config subprocess environment variables
        _remove_risky_env()
X
xiongkun 已提交
320
        _set_trainer_env(env_dict, backend)
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
        # execute function
        result = func(*args)
        # record function return value
        return_queue.put(result)
    except KeyboardInterrupt:
        pass
    except Exception:
        import traceback
        error_queue.put(traceback.format_exc())
        sys.exit(1)


class MultiprocessContext(object):
    def __init__(self, processes, error_queues, return_queues):
        _py_supported_check()
        self.error_queues = error_queues
        # NOTE(chenweihang): The `spawn` method is mainly used 
        # to wrap the outermost execution function of the program for 
        # parallel execution. Generally, the return value is not concerned, 
        # but if the user needs to obtain the return value, users can get  
        # the return result of each process from context.return_queues
        self.return_queues = return_queues
        self.processes = processes
        self.sentinels = {
            process.sentinel: index
            for index, process in enumerate(processes)
        }

    def join(self, timeout=None):
        if len(self.sentinels) == 0:
            return True

        ready = multiprocessing.connection.wait(
            self.sentinels.keys(), timeout=timeout)

        error_index = None
        for sentinel in ready:
            index = self.sentinels.pop(sentinel)
            process = self.processes[index]
            process.join()
            if process.exitcode != 0:
                error_index = index
                break

        if error_index is None:
            return len(self.sentinels) == 0

        for process in self.processes:
            if process.is_alive():
                process.terminate()
            process.join()

        self._throw_exception(error_index)

    def _throw_exception(self, error_index):
        if self.error_queues[error_index].empty():
            exitcode = self.processes[error_index].exitcode
            if exitcode < 0:
                name = signal.Signals(-exitcode).name
                raise Exception("Process %d terminated with signal %s." %
                                (error_index, name))
            else:
C
Chen Weihang 已提交
383 384
                raise Exception("Process %d terminated with exit code %d." %
                                (error_index, exitcode))
385 386 387 388 389 390 391 392 393 394 395 396 397

        original_trace = self.error_queues[error_index].get()
        msg = "\n\n----------------------------------------------\n" \
              "Process %d terminated with the following error:\n" \
              "----------------------------------------------\n\n" % error_index
        msg += original_trace
        raise Exception(msg)


def spawn(func, args=(), nprocs=-1, join=True, daemon=False, **options):
    """
    Start multiple processes with ``spawn`` method for parallel training.

398
    .. note::
C
Chen Weihang 已提交
399 400 401
        ``spawn`` now only supports GPU or XPU collective mode. The collective mode
        of GPU and XPU cannot be started at the same time, so the option `gpus` and
        `xpus` cannot be configured at the same time.
402

403 404 405 406
    Args:
        func (function): The target function is called by spawned process.
            This function need to be able to pickled, so it must be defined
            at the top level of a module.
407
        args (list|tuple, optional): Arguments passed to ``func``.
408
        nprocs (int, optional): Number of processed to start. Default: -1.
C
Chen Weihang 已提交
409 410 411 412 413
            when nprocs is -1, the available device will be obtained from
            the environment variable when the model is executed: If use GPU,
            the currently available device ID is obtained from the environment
            variable CUDA_VISIBLE_DEVICES; If use XPU, the currently available
            device ID is obtained from the environment variable XPU_VISIBLE_DEVICES.
414 415 416
        join (bool, optional): Perform a blocking join on all spawned processes.
            Default: True.
        daemon (bool, optional): The spawned processes' daemon flag. Default: False.
C
Chen Weihang 已提交
417 418 419 420 421 422 423 424 425 426 427 428 429
        **options(dict, optional): Other initial parallel execution environment
            configuration options. The following options are currently supported:
            (1) start_method (string): the way to start a process.
            The start method can be ``spawn`` , ``fork`` , ``forkserver`` .
            Because the CUDA runtime does not support the ``fork`` start method,
            when use CUDA in subprocesses, we should start process by ``spawn``
            or ``forkserver`` method. Default: "spawn" ;
            (2) gpus (string): The training process will run on the
            selected gpus, such as "0,1,2,3". Default: None;
            (3) xpus (string): The training process will run on the
            selected xpus, such as "0,1,2,3". Default: None;
            (4) ips (string): Paddle cluster nodes ips, such as
            "192.168.0.16,192.168.0.17". Default: "127.0.0.1" .
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448

    Returns:
        ``MultiprocessContext`` object, it hold the spawned processes.

    Examples:
        .. code-block:: python

            from __future__ import print_function

            import paddle
            import paddle.nn as nn
            import paddle.optimizer as opt
            import paddle.distributed as dist

            class LinearNet(nn.Layer):
                def __init__(self):
                    super(LinearNet, self).__init__()
                    self._linear1 = nn.Linear(10, 10)
                    self._linear2 = nn.Linear(10, 1)
C
Chen Weihang 已提交
449

450 451 452
                def forward(self, x):
                    return self._linear2(self._linear1(x))

C
Chen Weihang 已提交
453
            def train(print_result=False):
454
                # 1. initialize parallel environment
455 456
                group = dist.init_parallel_env()
                process_group = group.process_group if group else None
457

458
                # 2. create data parallel layer & optimizer
459
                layer = LinearNet()
460
                dp_layer = paddle.DataParallel(layer, process_group=process_group)
461 462 463 464 465

                loss_fn = nn.MSELoss()
                adam = opt.Adam(
                    learning_rate=0.001, parameters=dp_layer.parameters())

466
                # 3. run layer
467 468 469 470
                inputs = paddle.randn([10, 10], 'float32')
                outputs = dp_layer(inputs)
                labels = paddle.randn([10, 1], 'float32')
                loss = loss_fn(outputs, labels)
C
Chen Weihang 已提交
471

472 473
                if print_result is True:
                    print("loss:", loss.numpy())
C
Chen Weihang 已提交
474

475 476 477 478 479
                loss.backward()

                adam.step()
                adam.clear_grad()

C
Chen Weihang 已提交
480 481 482
            # Usage 1: only pass function.
            # If your training method no need any argument, and
            # use all visible devices for parallel training.
483 484 485 486
            if __name__ == '__main__':
                dist.spawn(train)

            # Usage 2: pass function and arguments.
C
Chen Weihang 已提交
487
            # If your training method need some arguments, and
488 489 490 491 492
            # use all visible devices for parallel training.
            if __name__ == '__main__':
                dist.spawn(train, args=(True,))

            # Usage 3: pass function, arguments and nprocs.
C
Chen Weihang 已提交
493
            # If your training method need some arguments, and
494 495
            # only use part of visible devices for parallel training.
            # If your machine hold 8 cards {0,1,2,3,4,5,6,7},
C
Chen Weihang 已提交
496
            # this case will use cards {0,1}; If you set
497 498 499 500 501
            # CUDA_VISIBLE_DEVICES=4,5,6,7, this case will use
            # cards {4,5}
            if __name__ == '__main__':
                dist.spawn(train, args=(True,), nprocs=2)

502
            # Usage 4: pass function, arguments, nprocs and gpus.
C
Chen Weihang 已提交
503
            # If your training method need some arguments, and
504
            # only use part of visible devices for parallel training,
C
Chen Weihang 已提交
505
            # but you can't set your machine's environment variable
506
            # CUDA_VISIBLE_DEVICES, such as it is None or all cards
C
Chen Weihang 已提交
507
            # {0,1,2,3,4,5,6,7}, you can pass `gpus` to
508 509 510
            # select the GPU cards you want to use. For example,
            # this case will use cards {4,5} if your machine hold 8 cards.
            if __name__ == '__main__':
511
                dist.spawn(train, args=(True,), nprocs=2, gpus='4,5')
512 513 514 515 516 517 518 519
    """
    # NOTE(chenweihang): [ why only supports python3.4+ ? ]
    # Python supported setting the child process startup method
    # since 3.4. The previous version can only use the default startup 
    # method, while the default startup method of Unix is fork, which 
    # cannot support CUDA runtime multi-process
    _py_supported_check()

520 521 522 523
    # Give an error hint when the users enter a configuration option 
    # that does not exist
    _options_valid_check(options)

524 525
    # get default nprocs
    if nprocs == -1:
526
        nprocs = _get_default_nprocs()
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551

    # NOTE(chenweihang): [ why need get cluster info before run? ]
    # when using `paddle.distributed.spawn` start parallel training, 
    # we should get cluster info before starting subprocess, and pass 
    # correct info to each subprocess
    procs_env_list = _get_subprocess_env_list(nprocs, options)

    # start processes
    # NOTE(chenweihang): [ why default start method is spawn? ]
    # The CUDA runtime does not support the fork start method, 
    # either the spawn or forkserver start method are required 
    # to use CUDA in subprocesses.
    start_method = options.get('start_method', None)
    if start_method is None:
        start_method = 'spawn'
    mp = multiprocessing.get_context(start_method)

    error_queues = []
    return_queues = []
    processes = []
    for i in range(nprocs):
        error_queue = mp.SimpleQueue()
        return_queue = mp.SimpleQueue()
        process = mp.Process(
            target=_func_wrapper,
X
xiongkun 已提交
552 553
            args=(func, args, error_queue, return_queue, procs_env_list[i],
                  options['backend']))
554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
        process.daemon = daemon
        process.start()
        error_queues.append(error_queue)
        return_queues.append(return_queue)
        processes.append(process)

    context = MultiprocessContext(processes, error_queues, return_queues)
    if not join:
        return context

    # loop until all process end
    while not context.join():
        pass

    # finally return context
    return context