elementwise_mul_op.h 4.2 KB
Newer Older
1 2
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15

#pragma once
16
#include "paddle/operators/elementwise_op_function.h"
17 18 19 20

namespace paddle {
namespace operators {

21 22 23 24 25
template <typename T>
struct MulFunctor {
  inline HOSTDEVICE T operator()(T a, T b) const { return a * b; }
};

Q
QI JUN 已提交
26
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
27
class ElementwiseMulKernel : public framework::OpKernel<T> {
28 29
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
30
    ElementwiseComputeEx<MulFunctor<T>, DeviceContext, T>(ctx);
G
gongweibao 已提交
31 32
  }
};
33

G
gongweibao 已提交
34 35 36 37 38
template <typename T>
struct ElementwiseMulGradFunctor {
  template <typename Device, typename X, typename Y, typename Z, typename dX,
            typename dY, typename dZ>
  void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz) {
39 40
    auto x_e = framework::EigenVector<T>::Flatten(*x);
    auto y_e = framework::EigenVector<T>::Flatten(*y);
G
gongweibao 已提交
41
    auto dz_e = framework::EigenVector<T>::Flatten(*dz);
42

G
gongweibao 已提交
43 44 45
    if (dx) {
      auto dx_e = framework::EigenVector<T>::Flatten(*dx);
      dx_e.device(d) = dz_e * y_e;
46 47
    }

G
gongweibao 已提交
48 49 50
    if (dy) {
      auto dy_e = framework::EigenVector<T>::Flatten(*dy);
      dy_e.device(d) = x_e * dz_e;
51 52 53 54
    }
  }
};

G
gongweibao 已提交
55 56 57 58 59
template <typename T>
struct ElementwiseMulBroadCastGradFunctor {
  template <typename Device, typename X, typename Y, typename Z, typename dX,
            typename dY, typename dZ, typename Pre, typename N>
  void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz, Pre pre, N n) {
60 61
    auto x_e = framework::EigenVector<T>::Flatten(*x);
    auto y_e = framework::EigenVector<T>::Flatten(*y);
G
gongweibao 已提交
62
    auto dz_e = framework::EigenVector<T>::Flatten(*dz);
63

G
gongweibao 已提交
64 65 66
    auto y_e_bcast = y_e.reshape(Eigen::DSizes<int, 2>(1, n))
                         .broadcast(Eigen::DSizes<int, 2>(pre, 1))
                         .reshape(Eigen::DSizes<int, 1>(x_e.size()));
67 68

    if (dx) {
G
gongweibao 已提交
69 70
      auto dx_e = framework::EigenVector<T>::Flatten(*dx);
      dx_e.device(d) = dz_e * y_e_bcast;
71
    }
G
gongweibao 已提交
72

73
    if (dy) {
G
gongweibao 已提交
74 75 76 77
      auto dy_e = framework::EigenVector<T>::Flatten(*dy);
      dy_e.device(d) = (x_e * dz_e)
                           .reshape(Eigen::DSizes<int, 2>(pre, n))
                           .sum(Eigen::array<int, 1>{{0}});
78
    }
G
gongweibao 已提交
79 80
  }
};
81

G
gongweibao 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
template <typename T>
struct ElementwiseMulBroadCast2GradFunctor {
  template <typename Device, typename X, typename Y, typename Z, typename dX,
            typename dY, typename dZ, typename Pre, typename N, typename Post>
  void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz, Pre pre, N n,
                  Post post) {
    auto x_e = framework::EigenVector<T>::Flatten(*x);
    auto y_e = framework::EigenVector<T>::Flatten(*y);
    auto dz_e = framework::EigenVector<T>::Flatten(*dz);

    auto y_e_bcast = y_e.reshape(Eigen::DSizes<int, 3>(1, n, 1))
                         .broadcast(Eigen::DSizes<int, 3>(pre, 1, post))
                         .reshape(Eigen::DSizes<int, 1>(x_e.size()));
    if (dx) {
      auto dx_e = framework::EigenVector<T>::Flatten(*dx);
      dx_e.device(d) = dz_e * y_e_bcast;
98 99
    }

G
gongweibao 已提交
100 101 102 103 104
    if (dy) {
      auto dy_e = framework::EigenVector<T>::Flatten(*dy);
      dy_e.device(d) = (x_e * dz_e)
                           .reshape(Eigen::DSizes<int, 3>(pre, n, post))
                           .sum(Eigen::array<int, 2>{{0, 2}});
105 106 107 108
    }
  }
};

Q
QI JUN 已提交
109
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
110
class ElementwiseMulGradKernel : public framework::OpKernel<T> {
G
gongweibao 已提交
111 112
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
Q
QI JUN 已提交
113
    ElementwiseGradCompute<DeviceContext, T, ElementwiseMulGradFunctor<T>,
G
gongweibao 已提交
114 115 116 117 118
                           ElementwiseMulBroadCastGradFunctor<T>,
                           ElementwiseMulBroadCast2GradFunctor<T>>(ctx);
  }
};

119 120
}  // namespace operators
}  // namespace paddle