test_multiprocess_dataloader_exception.py 7.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import multiprocessing
import numpy as np

import paddle.fluid as fluid
20
import paddle.fluid.core as core
21
from paddle.io import Dataset, IterableDataset, BatchSampler, DataLoader
22
from paddle.fluid.dataloader.dataloader_iter import _worker_loop
23 24 25


class RandomDataset(Dataset):
26

27 28 29 30 31 32 33 34 35 36 37 38 39 40
    def __init__(self, sample_num):
        self.sample_num = sample_num

    def __getitem__(self, idx):
        np.random.seed(idx)
        image = np.random.random([784]).astype('float32')
        label = np.random.randint(0, 9, (1, )).astype('int64')
        return image, label

    def __len__(self):
        return self.sample_num


class TestDataLoaderAssert(unittest.TestCase):
41

42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
    def test_main(self):
        place = fluid.cpu_places()[0]
        with fluid.dygraph.guard(place):
            dataset = RandomDataset(100)
            batch_sampler = BatchSampler(dataset=dataset, batch_size=4)

            # dataset is not instance of Dataset
            try:
                loader = DataLoader(dataset=batch_sampler, places=place)
                self.assertTrue(False)
            except AssertionError:
                pass

            # places is None
            try:
                loader = DataLoader(dataset=dataset, places=None)
                self.assertTrue(False)
            except AssertionError:
                pass

            # num_workers < 0
            try:
64 65 66
                loader = DataLoader(dataset=dataset,
                                    places=place,
                                    num_workers=-1)
67 68 69 70 71 72 73 74 75 76 77 78 79
                self.assertTrue(False)
            except AssertionError:
                pass

            # timeout < 0
            try:
                loader = DataLoader(dataset=dataset, places=place, timeout=-1)
                self.assertTrue(False)
            except AssertionError:
                pass

            # set batch_sampler and shuffle/batch_size/drop_last
            try:
80 81 82 83 84
                loader = DataLoader(dataset=dataset,
                                    places=place,
                                    batch_sampler=batch_sampler,
                                    shuffle=True,
                                    drop_last=True)
85 86 87 88 89 90
                self.assertTrue(False)
            except AssertionError:
                pass

            # set batch_sampler correctly
            try:
91 92 93
                loader = DataLoader(dataset=dataset,
                                    places=place,
                                    batch_sampler=batch_sampler)
94 95 96 97 98
                self.assertTrue(True)
            except AssertionError:
                self.assertTrue(False)


99
class TestDatasetRuntimeError(unittest.TestCase):
100

101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
    def test_main(self):
        dataset = Dataset()

        # __getitem__ not implement
        try:
            d = dataset[0]
            self.assertTrue(False)
        except NotImplementedError:
            pass

        # __len__ not implement
        try:
            l = len(dataset)
            self.assertTrue(False)
        except NotImplementedError:
            pass

        dataset = IterableDataset()

        # __iter__ not implement
        try:
            d = iter(dataset)
            self.assertTrue(False)
        except NotImplementedError:
            pass

        # __getitem__ runtime error
        try:
            d = dataset[0]
            self.assertTrue(False)
        except RuntimeError:
            pass

        # __len__ runtime error
        try:
            l = len(dataset)
            self.assertTrue(False)
        except RuntimeError:
            pass


142 143
# CI Converage cannot record stub in subprocess,
# HACK a _worker_loop in main process call here
144 145
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
146
class TestDataLoaderWorkerLoop(unittest.TestCase):
147

148 149 150 151 152 153 154 155 156 157 158 159 160
    def run_without_worker_done(self, use_shared_memory=True):
        try:
            place = fluid.cpu_places()[0]
            with fluid.dygraph.guard(place):
                dataset = RandomDataset(800)

                # test init_fn
                def _init_fn(worker_id):
                    pass

                # test collate_fn
                def _collate_fn(sample_list):
                    return [
161
                        np.stack(s, axis=0) for s in list(zip(*sample_list))
162 163
                    ]

164 165 166 167
                loader = DataLoader(dataset,
                                    num_workers=1,
                                    places=place,
                                    use_shared_memory=use_shared_memory)
168 169 170 171 172 173 174 175
                assert loader.num_workers > 0, \
                    "go to AssertionError and pass in Mac and Windows"
                loader = iter(loader)
                print("loader length", len(loader))
                indices_queue = multiprocessing.Queue()
                for i in range(10):
                    indices_queue.put([i, i + 10])
                indices_queue.put(None)
176
                base_seed = 1234
177 178
                _worker_loop(loader._dataset, 0, indices_queue,
                             loader._data_queue, loader._workers_done_event,
179
                             True, _collate_fn, True, _init_fn, 0, 1,
180
                             loader._use_shared_memory, base_seed)
181 182 183
                self.assertTrue(False)
        except AssertionError:
            pass
184 185 186 187
        except Exception as e:
            print("Exception", e)
            import sys
            sys.stdout.flush()
188 189 190 191
            self.assertTrue(False)

    def run_with_worker_done(self, use_shared_memory=True):
        try:
192
            place = fluid.CPUPlace()
193 194 195 196 197 198 199 200 201 202
            with fluid.dygraph.guard(place):
                dataset = RandomDataset(800)

                # test init_fn
                def _init_fn(worker_id):
                    pass

                # test collate_fn
                def _collate_fn(sample_list):
                    return [
203
                        np.stack(s, axis=0) for s in list(zip(*sample_list))
204 205
                    ]

206 207 208 209
                loader = DataLoader(dataset,
                                    num_workers=1,
                                    places=place,
                                    use_shared_memory=use_shared_memory)
210 211 212 213 214 215 216 217 218
                assert loader.num_workers > 0, \
                    "go to AssertionError and pass in Mac and Windows"
                loader = iter(loader)
                print("loader length", len(loader))
                indices_queue = multiprocessing.Queue()
                for i in range(10):
                    indices_queue.put([i, i + 10])
                indices_queue.put(None)
                loader._workers_done_event.set()
219
                base_seed = 1234
220 221
                _worker_loop(loader._dataset, 0, indices_queue,
                             loader._data_queue, loader._workers_done_event,
222
                             True, _collate_fn, True, _init_fn, 0, 1,
223
                             loader._use_shared_memory, base_seed)
224 225 226 227 228 229 230
                self.assertTrue(True)
        except AssertionError:
            pass
        except Exception:
            self.assertTrue(False)

    def test_main(self):
231 232
        # only HACK a subprocess call here, do not need to use_shared_memory
        for use_shared_memory in [False]:
233 234 235 236 237 238
            self.run_without_worker_done(use_shared_memory)
            self.run_with_worker_done(use_shared_memory)


if __name__ == '__main__':
    unittest.main()