test_memcpy_op.py 8.8 KB
Newer Older
J
JZ-LIANG 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import unittest
import paddle
import paddle.fluid.core as core
import paddle.fluid as fluid
20
from paddle.fluid import Program, program_guard
J
JZ-LIANG 已提交
21 22 23


class TestMemcpy_FillConstant(unittest.TestCase):
24

J
JZ-LIANG 已提交
25 26 27 28 29 30 31 32 33 34 35 36
    def get_prog(self):
        paddle.enable_static()
        main_program = Program()
        with program_guard(main_program):
            pinned_var_name = "tensor@Pinned"
            gpu_var_name = "tensor@GPU"
            pinned_var = main_program.global_block().create_var(
                name=pinned_var_name,
                shape=[10, 10],
                dtype='float32',
                persistable=False,
                stop_gradient=True)
37 38 39 40 41 42 43 44 45 46 47 48 49
            gpu_var = main_program.global_block().create_var(name=gpu_var_name,
                                                             shape=[10, 10],
                                                             dtype='float32',
                                                             persistable=False,
                                                             stop_gradient=True)
            main_program.global_block().append_op(type="fill_constant",
                                                  outputs={"Out": gpu_var_name},
                                                  attrs={
                                                      "shape": [10, 10],
                                                      "dtype": gpu_var.dtype,
                                                      "value": 1.0,
                                                      "place_type": 1
                                                  })
J
JZ-LIANG 已提交
50 51 52 53 54 55 56 57 58 59 60
            main_program.global_block().append_op(
                type="fill_constant",
                outputs={"Out": pinned_var_name},
                attrs={
                    "shape": [10, 10],
                    "dtype": gpu_var.dtype,
                    "value": 0.0,
                    "place_type": 2
                })
        return main_program, gpu_var, pinned_var

61
    def test_gpu_copy_to_pinned(self):
J
JZ-LIANG 已提交
62
        main_program, gpu_var, pinned_var = self.get_prog()
63 64 65 66
        main_program.global_block().append_op(type='memcpy',
                                              inputs={'X': gpu_var},
                                              outputs={'Out': pinned_var},
                                              attrs={'dst_place_type': 2})
J
JZ-LIANG 已提交
67 68 69 70 71
        place = fluid.CUDAPlace(0)
        exe = fluid.Executor(place)
        gpu_, pinned_ = exe.run(main_program,
                                feed={},
                                fetch_list=[gpu_var.name, pinned_var.name])
72 73
        np.testing.assert_allclose(gpu_, pinned_, rtol=1e-05)
        np.testing.assert_allclose(pinned_, np.ones((10, 10)), rtol=1e-05)
J
JZ-LIANG 已提交
74

75
    def test_pinned_copy_gpu(self):
J
JZ-LIANG 已提交
76
        main_program, gpu_var, pinned_var = self.get_prog()
77 78 79 80
        main_program.global_block().append_op(type='memcpy',
                                              inputs={'X': pinned_var},
                                              outputs={'Out': gpu_var},
                                              attrs={'dst_place_type': 1})
J
JZ-LIANG 已提交
81 82 83 84 85
        place = fluid.CUDAPlace(0)
        exe = fluid.Executor(place)
        gpu_, pinned_ = exe.run(main_program,
                                feed={},
                                fetch_list=[gpu_var.name, pinned_var.name])
86 87
        np.testing.assert_allclose(gpu_, pinned_, rtol=1e-05)
        np.testing.assert_allclose(gpu_, np.zeros((10, 10)), rtol=1e-05)
J
JZ-LIANG 已提交
88

89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
    def test_hip_copy_bool_value(self):
        if core.is_compiled_with_rocm():
            paddle.enable_static()
            main_program = Program()
            with program_guard(main_program):
                pinned_var_name = "tensor@Pinned"
                gpu_var_name = "tensor@GPU"
                pinned_var = main_program.global_block().create_var(
                    name=pinned_var_name,
                    shape=[1],
                    dtype='bool',
                    persistable=False,
                    stop_gradient=True)
                gpu_var = main_program.global_block().create_var(
                    name=gpu_var_name,
                    shape=[1],
                    dtype='bool',
                    persistable=False,
                    stop_gradient=True)
                main_program.global_block().append_op(
                    type="fill_constant",
                    outputs={"Out": gpu_var_name},
                    attrs={
                        "shape": [1],
                        "dtype": gpu_var.dtype,
                        "value": False,
                        "place_type": 1
                    })
                main_program.global_block().append_op(
                    type="fill_constant",
                    outputs={"Out": pinned_var_name},
                    attrs={
                        "shape": [1],
                        "dtype": gpu_var.dtype,
                        "value": True,
                        "place_type": 2
                    })

127 128 129 130
            main_program.global_block().append_op(type='memcpy',
                                                  inputs={'X': pinned_var},
                                                  outputs={'Out': gpu_var},
                                                  attrs={'dst_place_type': 1})
131 132 133 134 135 136
            place = fluid.CUDAPlace(0)
            exe = fluid.Executor(place)
            gpu_, pinned_ = exe.run(main_program,
                                    feed={},
                                    fetch_list=[gpu_var.name, pinned_var.name])
            expect_value = np.array([1]).astype('bool')
137
            np.testing.assert_array_equal(gpu_, expect_value)
138 139 140
        else:
            pass

J
JZ-LIANG 已提交
141 142

class TestMemcpyOPError(unittest.TestCase):
143

J
JZ-LIANG 已提交
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
    def get_prog(self):
        paddle.enable_static()
        main_program = Program()
        with program_guard(main_program):
            pinned_var = main_program.global_block().create_var(
                name="tensor@Pinned_0",
                shape=[10, 10],
                dtype='float32',
                persistable=False,
                stop_gradient=True)
            main_program.global_block().append_op(
                type="fill_constant",
                outputs={"Out": "tensor@Pinned_0"},
                attrs={
                    "shape": [10, 10],
                    "dtype": pinned_var.dtype,
                    "value": 0.0,
                    "place_type": 2
                })
        return main_program, pinned_var

    def test_SELECTED_ROWS(self):
        main_program, pinned_var = self.get_prog()
        selected_row_var = main_program.global_block().create_var( \
            name="selected_row_0", dtype="float32", persistable=False, \
            type=fluid.core.VarDesc.VarType.SELECTED_ROWS, stop_gradient=True)
170 171 172 173 174 175 176 177 178 179
        main_program.global_block().append_op(type="fill_constant",
                                              outputs={"Out": selected_row_var},
                                              attrs={
                                                  "shape":
                                                  selected_row_var.shape,
                                                  "dtype":
                                                  selected_row_var.dtype,
                                                  "value": 1.0,
                                                  "place_type": 1
                                              })
180 181 182 183 184 185
        with self.assertRaises(RuntimeError):
            main_program.global_block().append_op(
                type='memcpy',
                inputs={'X': selected_row_var},
                outputs={'Out': pinned_var},
                attrs={'dst_place_type': 2})
J
JZ-LIANG 已提交
186 187 188 189 190 191 192 193
            place = fluid.CUDAPlace(0)
            exe = fluid.Executor(place)
            selected_row_var_, pinned_ = exe.run(
                main_program,
                feed={},
                fetch_list=[selected_row_var.name, pinned_var.name])


194
class TestMemcpyApi(unittest.TestCase):
195

196 197 198
    def test_api(self):
        a = paddle.ones([1024, 1024])
        b = paddle.tensor.creation._memcpy(a, paddle.CUDAPinnedPlace())
199
        self.assertEqual(b.place.__repr__(), "Place(gpu_pinned)")
200
        np.testing.assert_array_equal(a.numpy(), b.numpy())
201 202


J
JZ-LIANG 已提交
203 204 205
if __name__ == '__main__':
    paddle.enable_static()
    unittest.main()