layers.py 23.5 KB
Newer Older
Y
Yu Yang 已提交
1
import paddle.v2.framework.core as core
2 3 4
from paddle.v2.framework.framework import OpProtoHolder, Variable, Program, Operator
from paddle.v2.framework.initializer import ConstantInitializer, NormalInitializer
from paddle.v2.framework.layer_helper import LayerHelper, unique_name
Y
Yu Yang 已提交
5 6
import re

Q
QI JUN 已提交
7
__all__ = [
Y
Yu Yang 已提交
8
    'fc', 'data', 'cross_entropy', 'conv2d', 'pool2d', 'embedding', 'concat',
D
dzhwinter 已提交
9 10
    'StaticRNN', 'cast', 'sequence_conv', 'sequence_pool', 'sums', 'cos_sim',
    'batch_norm', 'accuracy'
Q
QI JUN 已提交
11
]
Y
Yu Yang 已提交
12 13


F
fengjiayi 已提交
14 15 16 17 18 19 20
def fc(input,
       size,
       param_attr=None,
       bias_attr=True,
       name=None,
       act=None,
       num_flatten_dims=1,
21 22
       main_program=None,
       startup_program=None):
Y
Yu Yang 已提交
23 24 25 26 27 28 29 30 31
    # create helper
    helper = LayerHelper('fc', **locals())

    dtype = helper.input_dtype()

    # mul
    mul_results = []
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
32 33 34
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
Yu Yang 已提交
35 36 37 38 39 40 41 42 43 44
        w = helper.create_parameter(
            attr=param_attr, shape=param_shape, dtype=dtype)
        tmp = helper.create_tmp_variable(dtype)
        helper.append_op(
            type="mul",
            inputs={
                "X": input_var,
                "Y": w,
            },
            outputs={"Out": tmp},
Y
Yu Yang 已提交
45 46
            attrs={'x_num_col_dims': num_flatten_dims,
                   'y_num_col_dims': 1})
Y
Yu Yang 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
        mul_results.append(tmp)

    # sum
    if len(mul_results) == 1:
        pre_bias = mul_results[0]
    else:
        pre_bias = helper.create_tmp_variable(dtype)
        helper.append_op(
            type="sum", inputs={"X": mul_results}, outputs={"Out": pre_bias})
    # add bias
    pre_activation = helper.append_bias_op(pre_bias)
    # add activation
    return helper.append_activation(pre_activation)


Q
QI JUN 已提交
62 63 64
def embedding(input,
              size,
              data_type='float32',
65
              is_sparse=False,
Q
QI JUN 已提交
66
              param_attr=None,
67 68
              main_program=None,
              startup_program=None):
Q
QI JUN 已提交
69 70 71 72 73 74 75 76
    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=data_type)
    tmp = helper.create_tmp_variable(data_type)
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
77 78
        outputs={'Out': tmp},
        attrs={'is_sparse': is_sparse})
Q
QI JUN 已提交
79 80 81
    return tmp


F
fengjiayi 已提交
82 83 84 85
def data(name,
         shape,
         data_type='float32',
         type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
86
         append_batch_size=True,
87 88
         main_program=None,
         startup_program=None):
Y
Yu Yang 已提交
89
    helper = LayerHelper('data', **locals())
Y
Yu Yang 已提交
90 91 92 93 94 95 96 97
    shape = list(shape)
    for i in xrange(len(shape)):
        if shape[i] is None:
            shape[i] = -1
            append_batch_size = False
        elif shape[i] < 0:
            append_batch_size = False

Y
Yu Yang 已提交
98 99
    if append_batch_size:
        shape = [-1] + shape  # append batch size as -1
Y
Yu Yang 已提交
100

Y
Yu Yang 已提交
101 102 103 104 105 106 107 108 109 110 111
    return helper.create_global_variable(
        name=name, shape=shape, dtype=data_type, type=type)


def _convert_(name):
    s1 = re.sub('(.)([A-Z][a-z]+)', r'\1_\2', name)
    return re.sub('([a-z0-9])([A-Z])', r'\1_\2', s1).lower()


def _create_op_func_(op_type):
    op_proto = OpProtoHolder.instance().get_op_proto(op_type)
112 113 114 115 116 117
    not_intermediate_outputs = \
        filter(lambda output: not output.intermediate, op_proto.outputs)
    intermediate_outputs = \
        filter(lambda output: output.intermediate, op_proto.outputs)

    if len(not_intermediate_outputs) != 1:
Y
Yu Yang 已提交
118
        raise ValueError(
119 120
            "Only one not intermediate output operator can be automatically generated"
        )
Y
Yu Yang 已提交
121

122
    if not_intermediate_outputs[0].duplicable:
Y
Yu Yang 已提交
123 124 125
        raise ValueError(
            "Only not duplicable op can be automatically generated")

126 127 128 129 130 131 132 133
    for output in intermediate_outputs:
        if output.duplicable:
            raise ValueError(
                "Only when all intermediate ops are not duplicable, "
                "this op can be automatically generated")

    o_name = not_intermediate_outputs[0].name
    intermediate_output_names = [output.name for output in intermediate_outputs]
Y
Yu Yang 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155

    def func(**kwargs):
        helper = LayerHelper(op_type, **kwargs)
        inputs = dict()
        dtype = None
        for ipt in op_proto.inputs:
            name = _convert_(ipt.name)
            val = kwargs.pop(name, [])
            if not isinstance(val, list) and not isinstance(val, tuple):
                val = [val]
            for each in val:
                if not isinstance(each, Variable):
                    raise ValueError("input of {0} must be variable".format(
                        op_type))

                if dtype is None:
                    dtype = each.data_type
                elif dtype != each.data_type:
                    raise ValueError(
                        "operator {0} must input same dtype".format(op_type))
            inputs[ipt.name] = val

156
        outputs = dict()
Y
Yu Yang 已提交
157
        out = helper.create_tmp_variable(dtype=dtype)
158 159 160
        outputs[o_name] = [out]
        for name in intermediate_output_names:
            outputs[name] = [helper.create_tmp_variable(dtype=dtype)]
Y
Yu Yang 已提交
161
        helper.append_op(
162
            type=op_type, inputs=inputs, outputs=outputs, attrs=kwargs)
Q
Qiao Longfei 已提交
163
        return helper.append_activation(out)
Y
Yu Yang 已提交
164 165 166 167 168 169 170 171

    func.__name__ = op_type
    globals()[op_type] = func
    global __all__
    __all__.append(op_type)


_create_op_func_('mean')
Y
Yu Yang 已提交
172
_create_op_func_('mul')
Q
Qiao Longfei 已提交
173
_create_op_func_('elementwise_add')
174
_create_op_func_('dropout')
Q
Qiao Longfei 已提交
175
_create_op_func_('reshape')
Y
Yu Yang 已提交
176 177 178
_create_op_func_('elementwise_add')
_create_op_func_('sigmoid')
_create_op_func_('scale')
Y
Yu Yang 已提交
179 180


181
def cast(x, data_type, main_program=None):
Y
Yu Yang 已提交
182 183 184 185 186 187 188 189 190 191 192
    helper = LayerHelper('cast', **locals())
    out = helper.create_tmp_variable(dtype=data_type)
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_data_type': x.data_type,
               'out_data_type': out.data_type})
    return out


193
def concat(input, axis, main_program=None, startup_program=None):
Q
QI JUN 已提交
194
    helper = LayerHelper('concat', **locals())
D
dzhwinter 已提交
195
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
Q
QI JUN 已提交
196 197 198 199 200 201 202 203
    helper.append_op(
        type='concat',
        inputs={'X': input},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


204
def sums(input, main_program=None, startup_program=None):
D
dzhwinter 已提交
205 206
    helper = LayerHelper('sum', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
Y
Yu Yang 已提交
207
    helper.append_op(type='sum', inputs={'X': input}, outputs={'Out': out})
D
dzhwinter 已提交
208 209 210
    return out


211 212 213 214 215
def cos_sim(X, Y, **kwargs):
    helper = LayerHelper('cos_sim', **kwargs)
    out = helper.create_tmp_variable(dtype=X.data_type)
    xnorm = helper.create_tmp_variable(dtype=X.data_type)
    ynorm = helper.create_tmp_variable(dtype=X.data_type)
D
dzhwinter 已提交
216 217 218 219 220 221 222
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
223
    return out
D
dzhwinter 已提交
224 225


Y
Yu Yang 已提交
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
def cross_entropy(input, label, **kwargs):
    helper = LayerHelper('cross_entropy', **kwargs)
    out = helper.create_tmp_variable(dtype=input.data_type)
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
        attrs=kwargs)
    return out


def square_error_cost(input, label, **kwargs):
    helper = LayerHelper('square_error_cost', **kwargs)
    minus_out = helper.create_tmp_variable(dtype=input.data_type)
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

    square_out = helper.create_tmp_variable(dtype=input.data_type)
    helper.append_op(
Q
QI JUN 已提交
249
        type='square', inputs={'X': [minus_out]}, outputs={'Y': [square_out]})
Y
Yu Yang 已提交
250
    return square_out
251 252


F
fengjiayi 已提交
253 254 255 256 257 258 259 260 261 262 263 264 265 266
def accuracy(input, label, k=1, **kwargs):
    helper = LayerHelper("accuracy", **kwargs)
    topk_out = helper.create_tmp_variable(dtype=input.data_type)
    topk_indices = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [topk_out],
                 "Indices": [topk_indices]},
        attrs={"k": k})
    acc_out_dtype = kwargs.get("out_dtype", "float32")
    acc_out = helper.create_tmp_variable(dtype=acc_out_dtype)
    helper.append_op(
        type="accuracy",
武毅 已提交
267 268 269 270 271
        inputs={
            "Out": [topk_out],
            "Indices": [topk_indices],
            "Label": [label]
        },
F
fengjiayi 已提交
272 273 274 275
        outputs={"Accuracy": [acc_out]})
    return acc_out


D
dzhwinter 已提交
276 277 278
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
279
                  filter_stride=1,
280
                  act=None,
D
dzhwinter 已提交
281 282 283
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
284 285
                  main_program=None,
                  startup_program=None):
D
dzhwinter 已提交
286 287 288 289 290 291 292
    # FIXME(dzh) : want to unify the argument of python layer
    # function. So we ignore some unecessary attributes.
    # such as, padding_trainable, context_start.

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()

D
dzhwinter 已提交
293
    filter_shape = [filter_size * input.shape[1], num_filters]
D
dzhwinter 已提交
294 295 296 297 298 299 300 301
    filter = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
D
dzhwinter 已提交
302
            'Filter': [filter],
D
dzhwinter 已提交
303 304 305
        },
        outputs={"Out": pre_bias},
        attrs={
306
            'contextStride': filter_stride,
307
            'contextStart': -int(filter_size / 2),
308
            'contextLength': filter_size
D
dzhwinter 已提交
309 310 311 312 313
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


F
fengjiayi 已提交
314 315 316 317 318 319 320 321 322 323
def conv2d(input,
           num_filters,
           name=None,
           filter_size=[1, 1],
           act=None,
           groups=None,
           stride=[1, 1],
           padding=None,
           bias_attr=None,
           param_attr=None,
324 325
           main_program=None,
           startup_program=None):
326 327 328 329 330 331 332 333 334 335 336
    helper = LayerHelper('conv2d', **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups is not 0:
            raise ValueError("num_channels must be divisible by groups.")
        num_filter_channels = num_channels / groups

F
fengjiayi 已提交
337 338 339 340 341 342 343
    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]

344 345
    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size
346 347

    std = (2.0 / (filter_size[0]**2 * num_channels))**0.5
348
    filter = helper.create_parameter(
349 350 351 352
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        initializer=NormalInitializer(0.0, std, 0))
353 354 355 356 357 358 359 360 361 362 363 364 365
    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='conv2d',
        inputs={
            'Input': input,
            'Filter': filter,
        },
        outputs={"Output": pre_bias},
        attrs={'strides': stride,
               'paddings': padding,
               'groups': groups})

Y
Yu Yang 已提交
366
    pre_act = helper.append_bias_op(pre_bias, 1)
367 368

    return helper.append_activation(pre_act)
F
fengjiayi 已提交
369 370


D
dzhwinter 已提交
371
def sequence_pool(input, pool_type, **kwargs):
372
    helper = LayerHelper('sequence_pool', input=input, **kwargs)
D
dzhwinter 已提交
373 374 375 376 377 378
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="sequence_pool",
        inputs={"X": [input]},
D
dzhwinter 已提交
379
        outputs={"Out": [pool_out]},
D
dzhwinter 已提交
380
        attrs={"pooltype": pool_type.upper()})
D
dzhwinter 已提交
381 382 383 384

    return pool_out


F
fengjiayi 已提交
385 386 387 388 389 390
def pool2d(input,
           pool_size,
           pool_type,
           pool_stride=[1, 1],
           pool_padding=[0, 0],
           global_pooling=False,
391 392
           main_program=None,
           startup_program=None):
F
fengjiayi 已提交
393 394 395 396 397 398 399 400 401 402 403
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
    if isinstance(pool_size, int):
        pool_size = [pool_size, pool_size]
    if isinstance(pool_stride, int):
        pool_stride = [pool_stride, pool_stride]
    if isinstance(pool_padding, int):
        pool_padding = [pool_padding, pool_padding]

D
dzhwinter 已提交
404
    helper = LayerHelper('pool2d', **locals())
F
fengjiayi 已提交
405 406 407 408 409 410 411 412
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="pool2d",
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
C
chengduoZH 已提交
413
            "poolingType": pool_type,
F
fengjiayi 已提交
414
            "ksize": pool_size,
C
chengduoZH 已提交
415
            "globalPooling": global_pooling,
F
fengjiayi 已提交
416 417 418 419 420
            "strides": pool_stride,
            "paddings": pool_padding
        })

    return pool_out
Y
Yu Yang 已提交
421 422


Q
Qiao Longfei 已提交
423 424 425 426
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
427
               epsilon=1e-05,
Q
Qiao Longfei 已提交
428 429 430
               param_attr=None,
               bias_attr=None,
               data_layout='NCHW',
431 432
               main_program=None,
               startup_program=None):
Q
Qiao Longfei 已提交
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
449 450 451 452
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        initializer=ConstantInitializer(1.0))
Q
Qiao Longfei 已提交
453
    bias = helper.create_parameter(
454 455 456 457 458 459 460 461 462 463 464 465 466 467
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        initializer=ConstantInitializer(0.0))

    mean = helper.create_global_variable(
        dtype=input.data_type, shape=param_shape, persistable=True)
    helper.set_variable_initializer(
        var=mean, initializer=ConstantInitializer(0.0))

    variance = helper.create_global_variable(
        dtype=input.data_type, shape=param_shape, persistable=True)
    helper.set_variable_initializer(
        var=variance, initializer=ConstantInitializer(1.0))
Q
Qiao Longfei 已提交
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
    saved_mean = helper.create_tmp_variable(dtype)
    saved_variance = helper.create_tmp_variable(dtype)

    batch_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
        attrs={"momentum": momentum,
               "epsilon": epsilon,
               "is_test": is_test})

    return helper.append_activation(batch_norm_out)


Y
Yu Yang 已提交
502 503 504 505 506 507
class BlockGuard(object):
    """
    BlockGuard used to create sub-block in program by using Python `with` 
    keyword.
    """

508 509
    def __init__(self, main_program):
        if not isinstance(main_program, Program):
Y
Yu Yang 已提交
510
            raise TypeError("BlockGuard takes a program")
511
        self.main_program = main_program
Y
Yu Yang 已提交
512 513

    def __enter__(self):
514
        self.main_program.create_block()
Y
Yu Yang 已提交
515 516

    def __exit__(self, exc_type, exc_val, exc_tb):
517
        self.main_program.rollback()
Y
Yu Yang 已提交
518 519 520 521 522 523 524 525 526
        if exc_type is not None:
            return False  # re-raise exception
        return True


class StaticRNNGuard(BlockGuard):
    def __init__(self, rnn):
        if not isinstance(rnn, StaticRNN):
            raise TypeError("StaticRNNGuard takes an StaticRNN")
527
        super(StaticRNNGuard, self).__init__(rnn.helper.main_program)
Y
Yu Yang 已提交
528 529 530 531 532 533 534
        self.rnn = rnn

    def __enter__(self):
        self.rnn.status = StaticRNN.IN_RNN_BLOCK
        return super(StaticRNNGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
Y
Yu Yang 已提交
535 536
        if exc_type is not None:
            return False
Y
Yu Yang 已提交
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
        self.rnn.status = StaticRNN.AFTER_RNN_BLOCK
        self.rnn.complete_rnn_op()
        return super(StaticRNNGuard, self).__exit__(exc_type, exc_val, exc_tb)


class StaticRNNMemoryLink(object):
    """
    :param init: the initial variable for Memory
    :type init: Variable
    :param pre_mem: the memory variable in previous time step
    :type pre_mem: Variable
    :param mem: the memory variable in current time step
    :type mem: Variable
    """

    def __init__(self, init, pre_mem, mem=None):
        self.init = init
        self.pre_mem = pre_mem
        self.mem = mem


class StaticRNN(object):
    BEFORE_RNN_BLOCK = 0
    IN_RNN_BLOCK = 1
    AFTER_RNN_BLOCK = 2

563 564 565
    def __init__(self, name=None, main_program=None):
        self.helper = LayerHelper(
            "static_rnn", name=name, main_program=main_program)
Y
Yu Yang 已提交
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
        self.memories = {}  # memory map, from pre_mem.name --> MemoryLink
        self.inputs = []  # input variable list in current block
        self.outputs = []  # output variable list in parent block
        self.status = StaticRNN.BEFORE_RNN_BLOCK  # status flag.
        # sequence length, since it is a static RNN, sequence length are fixed.
        self.seq_len = None

    def step(self):
        return StaticRNNGuard(self)

    def _assert_in_rnn_block_(self, method):
        if self.status != StaticRNN.IN_RNN_BLOCK:
            raise ValueError("You must invoke {0} in rnn block".format(method))

    def memory(self, init=None, shape=None, dtype=None, init_value=0):
        self._assert_in_rnn_block_('memory')
        if init is None:
            if shape is None or dtype is None:
                raise ValueError(
                    "if init is None, memory at least need shape and dtype")
            parent_block = self.parent_block()
            var_name = unique_name("@".join([self.helper.name, "memory_boot"]))
            boot_var = parent_block.create_var(
                name=var_name, shape=shape, dtype=dtype, persistable=False)

            parent_block.append_op(
                type="fill_constant",
                inputs={},
                outputs={'Out': [boot_var]},
                attrs={
                    'value': init_value,
Y
Yu Yang 已提交
597
                    'shape': [40] + list(boot_var.shape[1:]),
Y
Yu Yang 已提交
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
                    'data_type': boot_var.data_type
                })

            return self.memory(init=boot_var)
        else:
            pre_mem = self.helper.create_variable(
                name=unique_name("@".join([self.helper.name, "mem"])),
                dtype=init.data_type,
                shape=init.shape)
            self.memories[pre_mem.name] = StaticRNNMemoryLink(
                init=init, pre_mem=pre_mem)
            return pre_mem

    def step_input(self, x):
        self._assert_in_rnn_block_('step_input')
        if not isinstance(x, Variable):
            raise TypeError("step input takes a Variable")
        if self.seq_len is None:
Y
Yu Yang 已提交
616 617
            self.seq_len = x.shape[0]
        elif self.seq_len != x.shape[0]:
Y
Yu Yang 已提交
618 619 620 621 622
            raise ValueError("Static RNN only take fix seq_len input")

        ipt = self.helper.create_variable(
            name=x.name,
            dtype=x.data_type,
Y
Yu Yang 已提交
623
            shape=list(x.shape[1:]),
Y
Yu Yang 已提交
624 625 626 627 628 629 630 631 632
            type=x.type)
        self.inputs.append(ipt)
        return ipt

    def step_output(self, o):
        self._assert_in_rnn_block_('step_output')
        if not isinstance(o, Variable):
            raise TypeError("step output takes a Variable")

Y
Yu Yang 已提交
633 634 635 636 637 638 639
        tmp_o = self.helper.create_tmp_variable(dtype=o.data_type)
        self.helper.append_op(
            type='rnn_memory_helper',
            inputs={'X': [o]},
            outputs={'Out': tmp_o},
            attrs={'data_type': o.data_type})

Y
Yu Yang 已提交
640
        out_var = self.parent_block().create_var(
Y
Yu Yang 已提交
641 642 643
            name=tmp_o.name,
            shape=[self.seq_len] + list(tmp_o.shape),
            dtype=tmp_o.data_type)
Y
Yu Yang 已提交
644 645 646 647 648 649 650 651 652 653 654 655 656

        self.outputs.append(out_var)

    def output(self, *outputs):
        for each in outputs:
            self.step_output(each)

    def update_memory(self, mem, var):
        if not isinstance(mem, Variable) or not isinstance(var, Variable):
            raise TypeError("update memory should take variables")
        self.memories[mem.name].mem = var

    def parent_block(self):
657
        prog = self.helper.main_program
Y
Yu Yang 已提交
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

    def __call__(self, *args, **kwargs):
        if self.status != StaticRNN.AFTER_RNN_BLOCK:
            raise ValueError("RNN output can only be retrieved after rnn block")
        if len(self.outputs) == 0:
            raise ValueError("RNN has no output")
        elif len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

    def complete_rnn_op(self):
674 675
        main_program = self.helper.main_program
        rnn_block = main_program.current_block()
Y
Yu Yang 已提交
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
        parent_block = self.parent_block()

        local_inputs = set()

        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    local_inputs.add(out_var_name)

        for var in self.inputs:
            local_inputs.add(var.name)
        for m in self.memories:
            local_inputs.add(m)

        params = list()
        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in local_inputs:
                        params.append(in_var_name)

        parameters = [parent_block.var(name) for name in params]

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        inlinks = [parent_block.var(i.name) for i in self.inputs]
        outlinks = self.outputs

        boot_memories = []
        pre_memories = []
        memories = []
        for _, mem in self.memories.iteritems():
            boot_memories.append(mem.init)
            pre_memories.append(mem.pre_mem.name)
            mem_var = rnn_block.var(mem.mem.name)
            assert isinstance(mem_var, Variable)
            new_mem = self.helper.create_tmp_variable(dtype=mem_var.data_type)

            rnn_block.append_op(
                type='rnn_memory_helper',
                inputs={'X': [mem_var]},
                outputs={'Out': [new_mem]},
                attrs={'data_type': mem_var.data_type})

            memories.append(new_mem.name)

        parent_block.append_op(
            type='recurrent',
            inputs={
                'inputs': inlinks,
                'initial_states': boot_memories,
                'parameters': parameters
            },
            outputs={'outputs': outlinks,
                     'step_scopes': [step_scope]},
            attrs={
                'ex_states': pre_memories,
                'states': memories,
                'step_block': rnn_block
            })
Y
Yu Yang 已提交
739 740


741
def lod_rank_table(x, level=0, main_program=None):
Y
Yu Yang 已提交
742 743 744 745 746 747 748 749 750 751
    helper = LayerHelper("lod_rank_table", **locals())
    table = helper.create_variable(
        type=core.VarDesc.VarType.LOD_RANK_TABLE,
        name=unique_name("lod_rank_table"))
    helper.append_op(
        type='lod_rank_table',
        inputs={'X': x},
        outputs={'Out': table},
        attrs={'level': level})
    return table