mkldnn_inplace_pass.cc 4.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/framework/ir/mkldnn/mkldnn_inplace_pass.h"
#include <algorithm>
#include <memory>
#include <string>
#include <vector>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/platform/enforce.h"

namespace paddle {
namespace framework {
namespace ir {

void MKLDNNInPlacePass::ApplyImpl(ir::Graph* graph) const {
  PADDLE_ENFORCE_NOT_NULL(graph,
                          platform::errors::InvalidArgument(
                              "Pointer to graph argument should not be NULL."));
  GraphPatternDetector gpd;
  patterns::MKLDNNInPlace mkldnn_inplace{gpd.mutable_pattern(),
                                         "mkldnn_inplace"};
  mkldnn_inplace();

  int found_inplace_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(3) << "Start to handle MKL-DNN In-Place pass";

    GET_IR_NODE_FROM_SUBGRAPH(inplace_to_be_op, inplace_to_be_op,
                              mkldnn_inplace);
    GET_IR_NODE_FROM_SUBGRAPH(inplace_to_be_op_in, inplace_to_be_op_in,
                              mkldnn_inplace);
    GET_IR_NODE_FROM_SUBGRAPH(inplace_to_be_op_out, inplace_to_be_op_out,
                              mkldnn_inplace);
    GET_IR_NODE_FROM_SUBGRAPH(next_op, next_op, mkldnn_inplace);

    if ((inplace_to_be_op->Op()->HasAttr("use_mkldnn") == false) ||
        (boost::get<bool>(inplace_to_be_op->Op()->GetAttr("use_mkldnn")) ==
         false)) {
      VLOG(3) << "do not perform mkl-dnn inplace: use_mkldnn missing or set to "
                 "false";
      return;
    }

    auto& infer_inplace = OpInfoMap::Instance()
                              .Get(inplace_to_be_op->Op()->Type())
                              .infer_inplace_;
    if (!infer_inplace) {
      VLOG(3) << "do not perform mkl-dnn inplace: missing InplaceInferer";
      return;
    }

    // TODO(jczaja): Enable more ops
    if (inplace_to_be_op->Op()->Type() != "softmax") {
      VLOG(3)
          << "Curently works for softmax only. TODO(jczaja): support other ops";
      return;
    }

    // Iterate over all nodes  that are ops
    // and check if in-place to be var is part of inputs
    // if positive then do not perform inplace
    for (const Node* n : graph->Nodes()) {
      if (n->IsOp()) {
        // Avoid searchin in op that is to be inplace
        if ((n->id() != inplace_to_be_op->id())) {
          auto* op = n->Op();
          auto inputs = op->Inputs();
          auto in_place_input = inplace_to_be_op_in->Name();
          for (auto& it : inputs) {
            for (auto& var_name : it.second) {
              if (var_name == in_place_input) {
                VLOG(3) << "MKL-DNN in-place pass: in-place var cannot be an "
                           "input to more than one operator";
                return;
              }
            }
          }
        }
      }
    }

    auto original_name = inplace_to_be_op_out->Name();
    inplace_to_be_op_out->RenameVar(inplace_to_be_op_in->Name());

    // Get mapping of input to output
    auto in_to_outs = infer_inplace(false);  // strictly no CUDA for MKL-DNN
    // TODO(jczaja): Support more complex situations
    auto out_name = in_to_outs.begin()->second;
    inplace_to_be_op->Op()->SetOutput(
        out_name, std::vector<std::string>({inplace_to_be_op_out->Name()}));
    next_op->Op()->RenameInput(original_name, inplace_to_be_op_out->Name());
    found_inplace_count++;
    VLOG(3) << "MKL-DNN InPlace applied!";
  };

  gpd(graph, handler);
}

}  // namespace ir
}  // namespace framework
}  // namespace paddle

REGISTER_PASS(mkldnn_inplace_pass, paddle::framework::ir::MKLDNNInPlacePass);