transpose_kernel.cc 8.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/sparse/unary_kernel.h"

#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/empty_kernel.h"
#include "paddle/phi/kernels/funcs/eigen/common.h"
#include "paddle/phi/kernels/funcs/eigen/eigen_function.h"
#include "paddle/phi/kernels/sparse/empty_kernel.h"

namespace phi {
namespace sparse {

template <typename T, typename Context>
void TransposeCooKernel(const Context& dev_ctx,
                        const SparseCooTensor& x,
                        const std::vector<int>& perm,
                        SparseCooTensor* out) {
  // create out sparse tensor
  int64_t x_nnz = x.nnz();
  DDim out_dims = x.dims().transpose(perm);
  DenseTensor out_indices = EmptyLike<int64_t, Context>(dev_ctx, x.indices());
  DenseTensor out_values(x.values());
  out->SetMember(out_indices, out_values, out_dims, x.coalesced());

  // compute values of indices
  const DenseTensor& x_indices = x.indices();
  const auto* x_indices_data = x_indices.data<int64_t>();
  auto* out_indices_data = out_indices.data<int64_t>();
  for (unsigned int i = 0; i < perm.size(); ++i) {
    for (int64_t j = 0; j < x_nnz; ++j) {
      out_indices_data[j + i * x_nnz] = x_indices_data[j + perm[i] * x_nnz];
    }
  }
}

template <typename T, typename Context>
void TransposeCsrKernel(const Context& dev_ctx,
                        const SparseCsrTensor& x,
                        const std::vector<int>& perm,
                        SparseCsrTensor* out) {
  unsigned int n_dim = perm.size();
  const DenseTensor& x_crows = x.crows();
  const DenseTensor& x_cols = x.cols();
  const DenseTensor& x_values = x.values();
  DenseTensor out_crows, out_cols, out_values;
  // return a copy of x
  if (perm[0] == 0 && perm[1] == 1 && (n_dim == 2 || perm[2] == 2)) {
    out_crows = x_crows;
    out_cols = x_cols;
    out_values = x_values;
    out->SetMember(out_crows, out_cols, out_values, x.dims());
    return;
  }
  // create out sparse tensor
  DDim out_dims = x.dims().transpose(perm);
  if (n_dim == 2) {
    out_crows = Empty<int64_t, Context>(dev_ctx, {out_dims[0] + 1});
  } else {
    out_crows =
        Empty<int64_t, Context>(dev_ctx, {out_dims[0] * (out_dims[1] + 1)});
  }
  out_cols = EmptyLike<int64_t, Context>(dev_ctx, x.cols());
  out_values = EmptyLike<T, Context>(dev_ctx, x.values());
  out->SetMember(out_crows, out_cols, out_values, out_dims);
  // transpose by two stages
  if (perm[0] == 1 && perm[1] == 2) {  // perm == {1, 2, 0}
    SparseCsrTensor temp;
    TransposeCsrKernel<T, Context>(dev_ctx, x, {1, 0, 2}, &temp);
    TransposeCsrKernel<T, Context>(dev_ctx, temp, {0, 2, 1}, out);
    return;
  } else if (perm[0] == 2 && perm[1] == 0) {  // perm == {2, 0, 1}
    SparseCsrTensor temp;
    TransposeCsrKernel<T, Context>(dev_ctx, x, {0, 2, 1}, &temp);
    TransposeCsrKernel<T, Context>(dev_ctx, temp, {1, 0, 2}, out);
    return;
  } else if (perm[0] == 2 && perm[1] == 1) {  // perm == {2, 1, 0}
    SparseCsrTensor temp;
    TransposeCsrKernel<T, Context>(dev_ctx, x, {1, 0, 2}, &temp);
    TransposeCsrKernel<T, Context>(dev_ctx, temp, {2, 0, 1}, out);
    return;
  }

  int64_t* out_crows_data = out_crows.data<int64_t>();
  int64_t* out_cols_data = out_cols.data<int64_t>();
  T* out_values_data = out_values.data<T>();
  const int64_t* x_crows_data = x_crows.data<int64_t>();
  const int64_t* x_cols_data = x_cols.data<int64_t>();
  const T* x_values_data = x_values.data<T>();

  int64_t x_nnz = x.nnz();
  if (n_dim == 2) {  // perm == {1, 0}
    // compute out_crows_data by x_cols_data
    for (int i = 0; i < out_dims[0]; ++i) {
      out_crows_data[i] = 0;
    }
    for (int i = 0; i < x_nnz; ++i) {
      int j = x_cols_data[i];
      out_crows_data[j + 1]++;
    }
    out_crows_data[out_dims[0]] = x_nnz;
    for (int i = 1; i < out_dims[0]; ++i) {
      out_crows_data[i] += out_crows_data[i - 1];
    }
    // compute out_cols_data and out_values_data by out_crows_data and x
    std::unordered_map<int64_t, int> cols_offset;
    for (int i = 0; i < x.dims()[0]; ++i) {
      int64_t start = x_crows_data[i];
      int64_t end = x_crows_data[i + 1];
      for (int64_t j = start; j < end; ++j) {
        int64_t x_cols_j = x_cols_data[j];
        int64_t jjj = out_crows_data[x_cols_j];
        if (cols_offset.count(jjj)) {
          cols_offset[jjj]++;
        } else {
          cols_offset[jjj] = 0;
        }
        int64_t jjj_offset = jjj + cols_offset[jjj];
        out_cols_data[jjj_offset] = i;
        out_values_data[jjj_offset] = x_values_data[j];
      }
    }
  } else {  // n_dim == 3
    int out_n_rows = out_dims[1];
    int x_n_rows = x.dims()[1];
    for (int k = 0; k < out_dims[0]; ++k) {
      if (perm[0] == 0) {  // perm == {0, 2, 1}
        // compute out_crows_data by x_cols_data
        for (int i = 0; i < out_n_rows; ++i) {
          out_crows_data[i] = 0;
        }
        for (int i = 0; i < x_crows_data[x_n_rows]; ++i) {
          int j = x_cols_data[i];
          out_crows_data[j + 1]++;
        }
        out_crows_data[out_n_rows] = x_crows_data[x_n_rows];
        for (int i = 1; i < out_n_rows; ++i) {
          out_crows_data[i] += out_crows_data[i - 1];
        }
        // compute out_cols_data and out_values_data by out_crows_data and x
        std::unordered_map<int64_t, int> cols_offset;
        for (int i = 0; i < x_n_rows; ++i) {
          int64_t start = x_crows_data[i];
          int64_t end = x_crows_data[i + 1];
          for (int64_t j = start; j < end; ++j) {
            int64_t x_cols_j = x_cols_data[j];
            int64_t jjj = out_crows_data[x_cols_j];
            if (cols_offset.count(jjj)) {
              cols_offset[jjj]++;
            } else {
              cols_offset[jjj] = 0;
            }
            int64_t jjj_offset = jjj + cols_offset[jjj];
            out_cols_data[jjj_offset] = i;
            out_values_data[jjj_offset] = x_values_data[j];
          }
        }
        // x offset
        x_cols_data += x_crows_data[x_n_rows];
        x_values_data += x_crows_data[x_n_rows];
        x_crows_data += x_n_rows + 1;
      } else if (perm[0] == 1 && perm[1] == 0) {  // perm == {1, 0, 2}
        for (int i = 0; i < out_n_rows; ++i) {
          out_crows_data[i] = 0;
        }
        int x_cols_offset = 0;
        int out_cols_index = 0;
        for (int i = 0; i < x.dims()[0]; ++i) {
          int x_crows_index = i * (x_n_rows + 1);
          int start = x_crows_data[x_crows_index + k];
          int end = x_crows_data[x_crows_index + 1 + k];
          out_crows_data[i + 1] = end - start;
          for (int j = start; j < end; ++j) {
            out_cols_data[out_cols_index] = x_cols_data[x_cols_offset + j];
            out_values_data[out_cols_index] = x_values_data[x_cols_offset + j];
            out_cols_index++;
          }
          x_cols_offset += x_crows_data[x_crows_index + x_n_rows];
        }
        for (int i = 1; i <= out_n_rows; ++i) {
          out_crows_data[i] += out_crows_data[i - 1];
        }
      }
      // out offset
      out_cols_data += out_crows_data[out_n_rows];
      out_values_data += out_crows_data[out_n_rows];
      out_crows_data += out_n_rows + 1;
    }
  }
}
}  // namespace sparse
}  // namespace phi

PD_REGISTER_KERNEL(transpose_coo,
                   CPU,
                   ALL_LAYOUT,
                   phi::sparse::TransposeCooKernel,
                   float,
                   double,
                   int8_t,
                   uint8_t,
                   int16_t,
                   int,
                   int64_t,
                   bool) {}

PD_REGISTER_KERNEL(transpose_csr,
                   CPU,
                   ALL_LAYOUT,
                   phi::sparse::TransposeCsrKernel,
                   float,
                   double,
                   int8_t,
                   uint8_t,
                   int16_t,
                   int,
                   int64_t,
                   bool) {}