test_tril_triu_op.py 6.4 KB
Newer Older
W
WuHaobo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at #
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
from op_test import OpTest
19
import paddle
W
WuHaobo 已提交
20 21
import paddle.fluid as fluid
import paddle.tensor as tensor
22
from paddle.fluid.framework import Program, program_guard
W
WuHaobo 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67


class TrilTriuOpDefaultTest(OpTest):
    """ the base class of other op testcases
    """

    def setUp(self):
        self.initTestCase()
        self.real_np_op = getattr(np, self.real_op_type)

        self.op_type = "tril_triu"
        self.inputs = {'X': self.X}
        self.attrs = {
            'diagonal': self.diagonal,
            'lower': True if self.real_op_type == 'tril' else False,
        }
        self.outputs = {
            'Out': self.real_np_op(self.X, self.diagonal)
            if self.diagonal else self.real_np_op(self.X)
        }

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['X'], 'Out')

    def initTestCase(self):
        self.real_op_type = np.random.choice(['triu', 'tril'])
        self.diagonal = None
        self.X = np.arange(1, 101, dtype="float64").reshape([10, -1])


def case_generator(op_type, Xshape, diagonal, expected):
    """
    Generate testcases with the params shape of X, diagonal and op_type.
    If arg`expercted` is 'success', it will register an Optest case and expect to pass.
    Otherwise, it will register an API case and check the expect failure.
    """
    cls_name = "{0}_{1}_shape_{2}_diag_{3}".format(expected, op_type, Xshape,
                                                   diagonal)
    errmsg = {
        "diagonal: TypeError":
        "diagonal in {} must be a python Int".format(op_type),
        "input: ValueError":
Y
yaoxuefeng 已提交
68
        "x shape in {} must be at least 2-D".format(op_type),
W
WuHaobo 已提交
69 70 71 72
    }

    class FailureCase(unittest.TestCase):
        def test_failure(self):
73 74
            paddle.enable_static()

W
WuHaobo 已提交
75 76 77
            data = fluid.data(shape=Xshape, dtype='float64', name=cls_name)
            with self.assertRaisesRegexp(
                    eval(expected.split(':')[-1]), errmsg[expected]):
Y
yaoxuefeng 已提交
78
                getattr(tensor, op_type)(x=data, diagonal=diagonal)
W
WuHaobo 已提交
79 80 81

    class SuccessCase(TrilTriuOpDefaultTest):
        def initTestCase(self):
82 83
            paddle.enable_static()

W
WuHaobo 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
            self.real_op_type = op_type
            self.diagonal = diagonal
            self.X = np.random.random(Xshape).astype("float64")

    CLASS = locals()['SuccessCase' if expected == "success" else 'FailureCase']
    CLASS.__name__ = cls_name
    globals()[cls_name] = CLASS


### NOTE: meaningful diagonal is [1 - min(H, W), max(H, W) -1]
### test the diagonal just at the border, upper/lower the border, 
###     negative/positive integer within range and a zero
cases = {
    'success': {
        (2, 2, 3, 4, 5): [-100, -3, -1, 0, 2, 4, 100],  # normal shape
        (10, 10, 1, 1): [-100, -1, 0, 1, 100],  # small size of matrix
    },
    'diagonal: TypeError': {
        (20, 20): [
            '2020',
            [20],
            {
                20: 20
            },
            (20, 20),
            20.20,
        ],  # str, list, dict, tuple, float
    },
    'input: ValueError': {
        (2020, ): [None],
    },
}
for _op_type in ['tril', 'triu']:
    for _expected, _params in cases.items():
        for _Xshape, _diaglist in _params.items():
            list(
                map(lambda _diagonal: case_generator(_op_type, _Xshape, _diagonal, _expected),
                    _diaglist))


class TestTrilTriuOpAPI(unittest.TestCase):
    """ test case by using API and has -1 dimension 
    """

    def test_api(self):
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
        paddle.enable_static()

        dtypes = ['float16', 'float32']
        for dtype in dtypes:
            prog = Program()
            startup_prog = Program()
            with program_guard(prog, startup_prog):
                data = np.random.random([1, 9, 9, 4]).astype(dtype)
                x = fluid.data(shape=[1, 9, -1, 4], dtype=dtype, name='x')
                tril_out, triu_out = tensor.tril(x), tensor.triu(x)

                place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
                ) else fluid.CPUPlace()
                exe = fluid.Executor(place)
                tril_out, triu_out = exe.run(
                    fluid.default_main_program(),
                    feed={"x": data},
                    fetch_list=[tril_out, triu_out], )
                self.assertTrue(np.allclose(tril_out, np.tril(data)))
                self.assertTrue(np.allclose(triu_out, np.triu(data)))
W
WuHaobo 已提交
149

150
    def test_api_with_dygraph(self):
151 152 153 154 155 156 157 158 159 160 161
        paddle.disable_static()

        dtypes = ['float16', 'float32']
        for dtype in dtypes:
            with fluid.dygraph.guard():
                data = np.random.random([1, 9, 9, 4]).astype(dtype)
                x = fluid.dygraph.to_variable(data)
                tril_out, triu_out = tensor.tril(x).numpy(), tensor.triu(
                    x).numpy()
                self.assertTrue(np.allclose(tril_out, np.tril(data)))
                self.assertTrue(np.allclose(triu_out, np.triu(data)))
162

Y
yaoxuefeng 已提交
163
    def test_fluid_api(self):
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
        paddle.enable_static()

        dtypes = ['float16', 'float32']
        for dtype in dtypes:
            prog = Program()
            startup_prog = Program()
            with program_guard(prog, startup_prog):
                data = np.random.random([1, 9, 9, 4]).astype(dtype)
                x = fluid.data(shape=[1, 9, -1, 4], dtype=dtype, name='x')
                triu_out = fluid.layers.triu(x)

                place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
                ) else fluid.CPUPlace()
                exe = fluid.Executor(place)
                triu_out = exe.run(fluid.default_main_program(),
                                   feed={"x": data},
                                   fetch_list=[triu_out])
Y
yaoxuefeng 已提交
181

W
WuHaobo 已提交
182 183 184

if __name__ == '__main__':
    unittest.main()