lstm_op.h 5.4 KB
Newer Older
D
dangqingqing 已提交
1 2
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

D
dangqingqing 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
D
dangqingqing 已提交
6

D
dangqingqing 已提交
7
http://www.apache.org/licenses/LICENSE-2.0
D
dangqingqing 已提交
8

D
dangqingqing 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dangqingqing 已提交
14 15 16

#pragma once
#include "paddle/framework/op_registry.h"
17 18 19
#include "paddle/operators/math/lstm_compute.h"
#include "paddle/operators/math/math_function.h"
#include "paddle/operators/math/sequence2batch.h"
D
dangqingqing 已提交
20 21 22 23 24 25

namespace paddle {
namespace operators {

using framework::LoDTensor;
using framework::Tensor;
26 27 28
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
D
dangqingqing 已提交
29 30 31 32

template <typename Place, typename T>
class LSTMKernel : public framework::OpKernel<T> {
 public:
D
dangqingqing 已提交
33
  void Compute(const framework::ExecutionContext& ctx) const override {
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
    auto* input = ctx.Input<framework::LoDTensor>("Input");
    auto* weight = ctx.Input<framework::Tensor>("Weight");
    auto* bias = ctx.Input<framework::Tensor>("Bias");

    auto* batch_gate = ctx.Output<framework::LoDTensor>("BatchGate");
    batch_gate->mutable_data<T>(ctx.GetPlace());
    auto* hidden_out = ctx.Output<framework::LoDTensor>("Hidden");
    hidden_out->mutable_data<T>(ctx.GetPlace());
    auto* cell_out = ctx.Output<framework::LoDTensor>("Cell");
    cell_out->mutable_data<T>(ctx.GetPlace());

    // Now the function ShareLoD in InferShape is not implemented.
    // So copy LoD here.
    ctx.ShareLoD("Input", "Hidden");
    ctx.ShareLoD("Input", "Cell");

    bool is_reverse = ctx.Attr<bool>("isReverse");
    math::LoDTensor2BatchFunctor<Place, T> to_batch;
    to_batch(ctx.device_context(), *input, *batch_gate, is_reverse);

    auto in_dims = input->dims();
D
dangqingqing 已提交
55 56
    int frame_size = in_dims[1];

57 58 59
    if (bias) {
      Eigen::array<int, 2> extents({{1, 4 * frame_size}});
      Eigen::array<int, 2> offsets({{0, 0}});
D
dangqingqing 已提交
60
      auto b = EigenMatrix<T>::From(*bias);
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
      auto gate = EigenMatrix<T>::From(*batch_gate);
      gate.device(ctx.GetEigenDevice<Place>()) =
          gate +
          b.slice(offsets, extents)
              .reshape(Eigen::array<int, 2>({{1, frame_size * 4}}))
              .broadcast(
                  Eigen::array<int, 2>({{static_cast<int>(in_dims[0]), 1}}));
    }

    math::LstmMetaValue<T> lstm_value;
    T* bias_data = const_cast<T*>(bias->data<T>());
    // the code styple in LstmMetaValue will be updated later.
    lstm_value.checkIg = bias_data + 4 * frame_size;
    lstm_value.checkFg = lstm_value.checkIg + frame_size;
    lstm_value.checkOg = lstm_value.checkFg + frame_size;
    lstm_value.prevStateValue = nullptr;

    framework::LoDTensor batch_out;
    batch_out.mutable_data<T>(in_dims, ctx.GetPlace());
    framework::LoDTensor batch_cell;
    batch_cell.mutable_data<T>(in_dims, ctx.GetPlace());
    framework::LoDTensor batch_cell_pre_act;
    batch_cell_pre_act.mutable_data<T>(in_dims, ctx.GetPlace());

    auto batch_lod = batch_gate->lod()[0];
    int num_batch = batch_lod.size() - 1;

    auto gate_act = ctx.Attr<std::string>("gateActivation");
    auto cell_act = ctx.Attr<std::string>("cellActivation");
    auto cand_act = ctx.Attr<std::string>("candidateActivation");

    for (int n = 0; n < num_batch; n++) {
      int bstart = batch_lod[n];
      int bend = batch_lod[n + 1];

      Tensor gate_t = batch_gate->Slice<T>(bstart, bend);
      Tensor out_t = batch_out.Slice<T>(bstart, bend);
      Tensor cell_t = batch_cell.Slice<T>(bstart, bend);
      Tensor cell_pre_act_t = batch_cell_pre_act.Slice<T>(bstart, bend);

      int cur_batch_size = bend - bstart;

      if (n != 0) {
        int pre_end = batch_lod[n - 1];
        auto pre_hidden_t = batch_out.Slice<T>(pre_end, bstart);
        math::matmul<Place, T>(ctx.device_context(), pre_hidden_t, false,
                               *weight, false, static_cast<T>(1.0), &gate_t,
                               static_cast<T>(0.0));
      }
      // else if : how to pass the state from
      // last mini-batch will be supported later

      lstm_value.gateValue = gate_t.data<T>();
      lstm_value.outputValue = out_t.data<T>();
      lstm_value.stateValue = cell_t.data<T>();
      lstm_value.stateActiveValue = cell_pre_act_t.data<T>();
      math::LstmUnitFunctor<Place, T>::compute(ctx.device_context(), lstm_value,
                                               frame_size, cur_batch_size,
                                               gate_act, cell_act, cand_act);
      lstm_value.prevStateValue = lstm_value.stateValue;
D
dangqingqing 已提交
121
    }
122 123 124 125 126 127 128 129 130

    math::Batch2LoDTensorFunctor<Place, T> to_seq;
    batch_out.set_lod(batch_gate->lod());
    // restore the output hidden in LoDTensor from the batch hidden
    to_seq(ctx.device_context(), batch_out, *hidden_out);

    batch_out.set_lod(batch_gate->lod());
    // restore the output cell state in LoDTensor from the batch cell
    to_seq(ctx.device_context(), batch_cell, *cell_out);
D
dangqingqing 已提交
131
  }
D
dangqingqing 已提交
132 133 134 135 136 137 138 139 140 141
};

template <typename Place, typename T>
class LSTMGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {}
};

}  // namespace operators
}  // namespace paddle