overlap_add_grad_kernel.cc 6.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/overlap_add_grad_kernel.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/overlap_add_functor.h"

namespace phi {

template <typename T, typename Context>
void OverlapAddGradKernel(const Context& dev_ctx,
                          const DenseTensor& x,
                          const DenseTensor& out_grad,
                          int hop_length,
                          int axis,
                          DenseTensor* x_grad) {
  dev_ctx.template Alloc<T>(x_grad);
  const size_t out_grad_rank = out_grad.dims().size();
  const size_t x_grad_rank = x_grad->dims().size();

  const int n_frames =
      (axis == 0) ? x_grad->dims()[0] : x_grad->dims()[x_grad_rank - 1];
  const int frame_length =
      (axis == 0) ? x_grad->dims()[1] : x_grad->dims()[x_grad_rank - 2];
  const int seq_length =
      (axis == 0) ? out_grad.dims()[0] : out_grad.dims()[out_grad_rank - 1];

  // When the number of input dims is larger than 2, it needs to copy
  // from x to resize input into 2d and output into 3d. Morevoer, output
  // dims will be restored at the last step.
  DenseTensor out_grad_(out_grad.type());
  out_grad_ = out_grad;

  phi::DDim preserved_dims;
  if (out_grad_rank > 2) {
    // Save dims used to flatten both input and output tensors and restore
    // output tensor.
    phi::DDim x_grad_resized_dims;
    phi::DDim out_grad_resized_dims;
    if (axis == 0) {
      preserved_dims = phi::slice_ddim(out_grad_.dims(), 1, out_grad_rank);
      x_grad_resized_dims = {
          n_frames, frame_length, phi::product(preserved_dims)};
      out_grad_resized_dims = {seq_length, phi::product(preserved_dims)};
    } else {
      preserved_dims = phi::slice_ddim(out_grad_.dims(), 0, out_grad_rank - 1);
      x_grad_resized_dims = {
          phi::product(preserved_dims), frame_length, n_frames};
      out_grad_resized_dims = {phi::product(preserved_dims), seq_length};
    }
    x_grad->Resize(x_grad_resized_dims);
    out_grad_.Resize(out_grad_resized_dims);
  }

  DenseTensor trans_x_grad(x_grad->type());
  DenseTensor trans_out_grad(out_grad_.type());

  // Transpose input and output in case that axis is 0.
  if (axis == 0) {
    if (out_grad_rank == 1U) {
      trans_out_grad = out_grad_;

      std::vector<int> perm_x_grad{1, 0};
      auto x_grad_dims_vec = phi::vectorize(x_grad->dims());
      for (int i = 0; i < x_grad->dims().size(); ++i) {
        x_grad_dims_vec[i] = x_grad->dims()[perm_x_grad[i]];
      }
      trans_x_grad.Resize(phi::make_ddim(x_grad_dims_vec));
      dev_ctx.template Alloc<T>(&trans_x_grad);
      phi::funcs::TransCompute<Context, T>(
          perm_x_grad.size(), dev_ctx, *x_grad, &trans_x_grad, perm_x_grad);
    } else {
      std::vector<int> perm_d_out{1, 0};
      auto out_grad_dims_vec = phi::vectorize(out_grad_.dims());
      for (int i = 0; i < out_grad_.dims().size(); ++i) {
        out_grad_dims_vec[i] = out_grad_.dims()[perm_d_out[i]];
      }
      trans_out_grad.Resize(phi::make_ddim(out_grad_dims_vec));
      dev_ctx.template Alloc<T>(&trans_out_grad);
      phi::funcs::TransCompute<Context, T>(
          perm_d_out.size(), dev_ctx, out_grad_, &trans_out_grad, perm_d_out);

      std::vector<int> perm_x_grad{2, 1, 0};
      auto x_grad_dims_vec = phi::vectorize(x_grad->dims());
      for (int i = 0; i < x_grad->dims().size(); ++i) {
        x_grad_dims_vec[i] = x_grad->dims()[perm_x_grad[i]];
      }
      trans_x_grad.Resize(phi::make_ddim(x_grad_dims_vec));
      dev_ctx.template Alloc<T>(&trans_x_grad);
      phi::funcs::TransCompute<Context, T>(
          perm_x_grad.size(), dev_ctx, *x_grad, &trans_x_grad, perm_x_grad);
    }
  } else {
    trans_x_grad = *x_grad;
    trans_out_grad = out_grad_;
  }

  OverlapAddFunctor<Context, T>()(dev_ctx,
                                  &trans_out_grad,
                                  &trans_x_grad,
                                  seq_length,
                                  frame_length,
                                  n_frames,
                                  hop_length,
                                  /*is_grad*/ true);

  // Transpose output in case axis is 0.
  if (axis == 0) {
    if (out_grad_rank == 1U) {
      std::vector<int> perm_x_grad{1, 0};
      phi::funcs::TransCompute<Context, T>(
          perm_x_grad.size(), dev_ctx, trans_x_grad, x_grad, perm_x_grad);
    } else {
      std::vector<int> perm_x_grad{2, 1, 0};
      phi::funcs::TransCompute<Context, T>(
          perm_x_grad.size(), dev_ctx, trans_x_grad, x_grad, perm_x_grad);
    }
  }

  // Restore output dims when the number of dims is larger than 2.
  if (out_grad_rank > 2) {
    std::vector<int64_t> restored_x_grad_shape;
    for (int i = 0; i < preserved_dims.size(); i++) {
      restored_x_grad_shape.push_back(preserved_dims[i]);
    }

    if (axis == 0) {
      // (n_frames, frame_length, ...)
      restored_x_grad_shape.insert(restored_x_grad_shape.begin(), frame_length);
      restored_x_grad_shape.insert(restored_x_grad_shape.begin(), n_frames);
    } else {
      // (..., frame_length, n_frames)
      restored_x_grad_shape.push_back(frame_length);
      restored_x_grad_shape.push_back(n_frames);
    }

    x_grad->Resize(phi::make_ddim(restored_x_grad_shape));
  }
}

}  // namespace phi

PD_REGISTER_KERNEL(overlap_add_grad,
                   CPU,
                   ALL_LAYOUT,
                   phi::OverlapAddGradKernel,
                   int,
                   int64_t,
                   float,
                   double,
                   paddle::platform::complex<float>,
                   paddle::platform::complex<double>) {}