vgg16_fluid.py 10.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
T
typhoonzero 已提交
2 3 4 5 6 7 8 9 10 11 12 13
# 
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# 
#     http://www.apache.org/licenses/LICENSE-2.0
# 
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
T
typhoonzero 已提交
14 15 16 17 18 19 20 21 22
"""VGG16 benchmark in Fluid"""
from __future__ import print_function

import sys
import time
import numpy as np
import paddle.v2 as paddle
import paddle.v2.fluid as fluid
import paddle.v2.fluid.core as core
T
typhoonzero 已提交
23
import paddle.v2.fluid.profiler as profiler
T
typhoonzero 已提交
24 25 26 27
import argparse
import functools
import os

T
typhoonzero 已提交
28

T
typhoonzero 已提交
29 30 31 32 33 34 35 36
def str2bool(v):
    if v.lower() in ('yes', 'true', 't', 'y', '1'):
        return True
    elif v.lower() in ('no', 'false', 'f', 'n', '0'):
        return False
    else:
        raise argparse.ArgumentTypeError('Boolean value expected.')

T
typhoonzero 已提交
37

T
typhoonzero 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
    '--batch_size', type=int, default=128, help="Batch size for training.")
parser.add_argument(
    '--learning_rate',
    type=float,
    default=1e-3,
    help="Learning rate for training.")
parser.add_argument('--num_passes', type=int, default=50, help="No. of passes.")
parser.add_argument(
    '--device',
    type=str,
    default='CPU',
    choices=['CPU', 'GPU'],
    help="The device type.")
T
typhoonzero 已提交
53
parser.add_argument('--device_id', type=int, default=0, help="The device id.")
T
typhoonzero 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
parser.add_argument(
    '--data_format',
    type=str,
    default='NCHW',
    choices=['NCHW', 'NHWC'],
    help='The data order, now only support NCHW.')
parser.add_argument(
    '--data_set',
    type=str,
    default='cifar10',
    choices=['cifar10', 'flowers'],
    help='Optional dataset for benchmark.')
parser.add_argument(
    '--local',
    type=str2bool,
    default=True,
    help='Whether to run as local mode.')
G
gongweibao 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85

parser.add_argument(
    "--ps_hosts",
    type=str,
    default="",
    help="Comma-separated list of hostname:port pairs")
parser.add_argument(
    "--trainer_hosts",
    type=str,
    default="",
    help="Comma-separated list of hostname:port pairs")

# Flags for defining the tf.train.Server
parser.add_argument(
    "--task_index", type=int, default=0, help="Index of task within the job")
T
typhoonzero 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
args = parser.parse_args()


def vgg16_bn_drop(input):
    def conv_block(input, num_filter, groups, dropouts):
        return fluid.nets.img_conv_group(
            input=input,
            pool_size=2,
            pool_stride=2,
            conv_num_filter=[num_filter] * groups,
            conv_filter_size=3,
            conv_act='relu',
            conv_with_batchnorm=True,
            conv_batchnorm_drop_rate=dropouts,
            pool_type='max')

    conv1 = conv_block(input, 64, 2, [0.3, 0])
    conv2 = conv_block(conv1, 128, 2, [0.4, 0])
    conv3 = conv_block(conv2, 256, 3, [0.4, 0.4, 0])
    conv4 = conv_block(conv3, 512, 3, [0.4, 0.4, 0])
    conv5 = conv_block(conv4, 512, 3, [0.4, 0.4, 0])

    drop = fluid.layers.dropout(x=conv5, dropout_prob=0.5)
    fc1 = fluid.layers.fc(input=drop, size=512, act=None)
    bn = fluid.layers.batch_norm(input=fc1, act='relu')
    drop2 = fluid.layers.dropout(x=bn, dropout_prob=0.5)
    fc2 = fluid.layers.fc(input=drop2, size=512, act=None)
    return fc2


def main():
    if args.data_set == "cifar10":
        classdim = 10
        if args.data_format == 'NCHW':
            data_shape = [3, 32, 32]
        else:
            data_shape = [32, 32, 3]
    else:
        classdim = 102
        if args.data_format == 'NCHW':
            data_shape = [3, 224, 224]
        else:
            data_shape = [224, 224, 3]

    # Input data
    images = fluid.layers.data(name='pixel', shape=data_shape, dtype='float32')
    label = fluid.layers.data(name='label', shape=[1], dtype='int64')

    # Train program
    net = vgg16_bn_drop(images)
    predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
    cost = fluid.layers.cross_entropy(input=predict, label=label)
    avg_cost = fluid.layers.mean(x=cost)

    # Evaluator
    accuracy = fluid.evaluator.Accuracy(input=predict, label=label)

    # inference program
    inference_program = fluid.default_main_program().clone()
    with fluid.program_guard(inference_program):
        test_target = accuracy.metrics + accuracy.states
        inference_program = fluid.io.get_inference_program(test_target)

    # Optimization
    optimizer = fluid.optimizer.Adam(learning_rate=args.learning_rate)
    optimize_ops, params_grads = optimizer.minimize(avg_cost)

    # Initialize executor
T
typhoonzero 已提交
154 155
    place = core.CPUPlace() if args.device == 'CPU' else core.CUDAPlace(
        args.device_id)
T
typhoonzero 已提交
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
    exe = fluid.Executor(place)

    # test
    def test(exe):
        accuracy.reset(exe)
        for batch_id, data in enumerate(test_reader()):
            img_data = np.array(map(lambda x: x[0].reshape(data_shape),
                                    data)).astype("float32")
            y_data = np.array(map(lambda x: x[1], data)).astype("int64")
            y_data = y_data.reshape([-1, 1])

            exe.run(inference_program,
                    feed={"pixel": img_data,
                          "label": y_data})

        return accuracy.eval(exe)

    def train_loop(exe, trainer_prog):
        iters = 0
T
typhoonzero 已提交
175
        ts = time.time()
T
typhoonzero 已提交
176 177 178 179 180
        for pass_id in range(args.num_passes):
            # train
            start_time = time.time()
            num_samples = 0
            accuracy.reset(exe)
T
typhoonzero 已提交
181 182 183 184 185 186 187 188 189
            with profiler.profiler("CPU", 'total') as prof:
                for batch_id, data in enumerate(train_reader()):
                    ts = time.time()
                    img_data = np.array(
                        map(lambda x: x[0].reshape(data_shape), data)).astype(
                            "float32")
                    y_data = np.array(map(lambda x: x[1], data)).astype("int64")
                    y_data = y_data.reshape([-1, 1])

T
typhoonzero 已提交
190 191 192 193 194
                    loss, acc = exe.run(
                        trainer_prog,
                        feed={"pixel": img_data,
                              "label": y_data},
                        fetch_list=[avg_cost] + accuracy.metrics)
T
typhoonzero 已提交
195 196 197
                    iters += 1
                    num_samples += len(data)
                    print(
G
gongweibao 已提交
198 199 200
                        "Pass = %d, Iters = %d, Loss = %f, Accuracy = %f, Speed = %.2f img/s"
                        % (pass_id, iters, loss, acc,
                           len(data) / (time.time() - ts))
T
typhoonzero 已提交
201
                    )  # The accuracy is the accumulation of batches, but not the current batch.
T
typhoonzero 已提交
202 203 204 205 206 207 208

            pass_elapsed = time.time() - start_time
            pass_train_acc = accuracy.eval(exe)
            pass_test_acc = test(exe)
            print(
                "Pass = %d, Training performance = %f imgs/s, Train accuracy = %f, Test accuracy = %f\n"
                % (pass_id, num_samples / pass_elapsed, pass_train_acc,
T
typhoonzero 已提交
209
                   pass_test_acc))
T
typhoonzero 已提交
210 211 212 213 214 215 216 217

    if args.local:
        # Parameter initialization
        exe.run(fluid.default_startup_program())

        # data reader
        train_reader = paddle.batch(
            paddle.reader.shuffle(
T
typhoonzero 已提交
218 219
                paddle.dataset.cifar.train10() if args.data_set == 'cifar10'
                else paddle.dataset.flowers.train(),
T
typhoonzero 已提交
220 221 222 223 224 225 226 227 228
                buf_size=5120),
            batch_size=args.batch_size)
        test_reader = paddle.batch(
            paddle.dataset.cifar.test10()
            if args.data_set == 'cifar10' else paddle.dataset.flowers.test(),
            batch_size=args.batch_size)
        train_loop(exe, fluid.default_main_program())
    else:
        trainers = int(os.getenv("TRAINERS"))  # total trainer count
T
typhoonzero 已提交
229
        print("trainers total: ", trainers)
G
gongweibao 已提交
230

T
typhoonzero 已提交
231 232 233
        training_role = os.getenv(
            "TRAINING_ROLE",
            "TRAINER")  # get the training role: trainer/pserver
G
gongweibao 已提交
234

T
typhoonzero 已提交
235 236
        t = fluid.DistributeTranspiler()
        t.transpile(
T
typhoonzero 已提交
237 238
            optimize_ops,
            params_grads,
G
gongweibao 已提交
239 240
            trainer_id=args.task_index,
            pservers=args.ps_hosts,
T
typhoonzero 已提交
241
            trainers=trainers)
T
typhoonzero 已提交
242 243

        if training_role == "PSERVER":
G
gongweibao 已提交
244 245
            current_endpoint = os.getenv("POD_IP") + ":" + os.getenv(
                "PADDLE_INIT_PORT")
T
typhoonzero 已提交
246 247 248 249
            if not current_endpoint:
                print("need env SERVER_ENDPOINT")
                exit(1)
            pserver_prog = t.get_pserver_program(current_endpoint)
T
typhoonzero 已提交
250 251
            pserver_startup = t.get_startup_program(current_endpoint,
                                                    pserver_prog)
T
typhoonzero 已提交
252 253 254 255 256 257 258 259 260 261 262
            print("starting server side startup")
            exe.run(pserver_startup)
            print("starting parameter server...")
            exe.run(pserver_prog)
        elif training_role == "TRAINER":
            # Parameter initialization
            exe.run(fluid.default_startup_program())

            # data reader
            train_reader = paddle.batch(
                paddle.reader.shuffle(
T
typhoonzero 已提交
263 264
                    paddle.dataset.cifar.train10() if args.data_set == 'cifar10'
                    else paddle.dataset.flowers.train(),
T
typhoonzero 已提交
265 266 267
                    buf_size=5120),
                batch_size=args.batch_size)
            test_reader = paddle.batch(
T
typhoonzero 已提交
268 269
                paddle.dataset.cifar.test10() if args.data_set == 'cifar10' else
                paddle.dataset.flowers.test(),
T
typhoonzero 已提交
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
                batch_size=args.batch_size)

            trainer_prog = t.get_trainer_program()
            feeder = fluid.DataFeeder(feed_list=[images, label], place=place)
            # TODO(typhoonzero): change trainer startup program to fetch parameters from pserver
            exe.run(fluid.default_startup_program())
            train_loop(exe, trainer_prog)
        else:
            print("environment var TRAINER_ROLE should be TRAINER os PSERVER")


def print_arguments():
    print('-----------  Configuration Arguments -----------')
    for arg, value in sorted(vars(args).iteritems()):
        print('%s: %s' % (arg, value))
    print('------------------------------------------------')


if __name__ == "__main__":
    print_arguments()
    main()