roi_pool_op.cc 6.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
W
wanghaox 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/roi_pool_op.h"
W
wanghaox 已提交
16 17 18 19

namespace paddle {
namespace operators {

W
wanghaox 已提交
20
using Tensor = framework::Tensor;
21
using LoDTensor = framework::LoDTensor;
W
wanghaox 已提交
22

W
wanghaox 已提交
23
class ROIPoolOp : public framework::OperatorWithKernel {
W
wanghaox 已提交
24 25 26 27 28
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"),
W
wanghaox 已提交
29 30 31
                   "Input(X) of ROIPoolOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("ROIs"),
                   "Input(ROIs) of ROIPoolOp should not be null.");
W
wanghaox 已提交
32
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
W
wanghaox 已提交
33
                   "Output(Out) of ROIPoolOp should not be null.");
W
wanghaox 已提交
34
    PADDLE_ENFORCE(ctx->HasOutput("Argmax"),
W
wanghaox 已提交
35
                   "Output(Argmax) of ROIPoolOp should not be null.");
W
wanghaox 已提交
36
    auto input_dims = ctx->GetInputDim("X");
W
wanghaox 已提交
37 38 39 40 41
    auto rois_dims = ctx->GetInputDim("ROIs");

    PADDLE_ENFORCE(input_dims.size() == 4,
                   "The format of input tensor is NCHW.");
    PADDLE_ENFORCE(rois_dims.size() == 2,
42 43
                   "ROIs should be a 2-D LoDTensor of shape (num_rois, 4)"
                   "given as [[x1, y1, x2, y2], …].");
W
wanghaox 已提交
44
    PADDLE_ENFORCE(rois_dims[1] == kROISize,
45 46
                   "ROIs should be a 2-D LoDTensor of shape (num_rois, 4)"
                   "given as [[x1, y1, x2, y2], …].");
W
wanghaox 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66

    int pooled_height = ctx->Attrs().Get<int>("pooled_height");
    int pooled_width = ctx->Attrs().Get<int>("pooled_width");
    float spatial_scale = ctx->Attrs().Get<float>("spatial_scale");

    PADDLE_ENFORCE_GT(pooled_height, 0,
                      "The pooled output height must greater than 0");
    PADDLE_ENFORCE_GT(pooled_width, 0,
                      "The pooled output width must greater than 0");
    PADDLE_ENFORCE_GT(spatial_scale, 0.0f,
                      "The spatial scale must greater than 0");

    auto out_dims = input_dims;
    out_dims[0] = rois_dims[0];
    out_dims[1] = input_dims[1];
    out_dims[2] = pooled_height;
    out_dims[3] = pooled_width;

    ctx->SetOutputDim("Out", out_dims);
    ctx->SetOutputDim("Argmax", out_dims);
67
  }
W
wanghaox 已提交
68 69

 protected:
70
  framework::OpKernelType GetExpectedKernelType(
W
wanghaox 已提交
71 72 73 74 75 76 77
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
        framework::ToDataType(ctx.Input<framework::Tensor>("X")->type()),
        ctx.device_context());
  }
};

W
wanghaox 已提交
78
class ROIPoolGradOp : public framework::OperatorWithKernel {
W
wanghaox 已提交
79 80 81 82 83 84 85 86 87 88 89 90
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "The gradient of Out should not be null.");
    PADDLE_ENFORCE(ctx->HasOutputs(framework::GradVarName("X")),
                   "The gradient of X should not be null.");
    ctx->SetOutputsDim(framework::GradVarName("X"), ctx->GetInputsDim("X"));
  }

 protected:
91
  framework::OpKernelType GetExpectedKernelType(
W
wanghaox 已提交
92 93 94 95 96 97 98
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
        framework::ToDataType(ctx.Input<framework::Tensor>("X")->type()),
        ctx.device_context());
  }
};

W
wanghaox 已提交
99
class ROIPoolOpMaker : public framework::OpProtoAndCheckerMaker {
W
wanghaox 已提交
100
 public:
101
  ROIPoolOpMaker(OpProto* proto, OpAttrChecker* op_checker)
W
wanghaox 已提交
102 103 104
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("X",
             "(Tensor), "
W
wanghaox 已提交
105 106 107 108 109 110
             "the input of ROIPoolOp. "
             "The format of input tensor is NCHW. Where N is batch size, "
             "C is the number of input channels, "
             "H is the height of the feature, and "
             "W is the width of the feature.");
    AddInput("ROIs",
111
             "(LoDTensor), "
W
wanghaox 已提交
112
             "ROIs (Regions of Interest) to pool over. "
113 114
             "should be a 2-D LoDTensor of shape (num_rois, 4)"
             "given as [[x1, y1, x2, y2], …]. "
W
wanghaox 已提交
115 116 117
             "Where batch_id is the id of the data, "
             "(x1, y1) is the top left coordinates, and "
             "(x2, y2) is the bottom right coordinates.");
W
wanghaox 已提交
118 119
    AddOutput("Out",
              "(Tensor), "
W
wanghaox 已提交
120 121
              "The output of ROIPoolOp is a 4-D tensor with shape "
              "(num_rois, channels, pooled_h, pooled_w).");
W
wanghaox 已提交
122 123 124 125
    AddOutput("Argmax",
              "(Tensor), "
              "Argmaxes corresponding to indices in X used "
              "for gradient computation. Only output "
126 127
              "if arg “is_test” is false.")
        .AsIntermediate();
W
wanghaox 已提交
128
    AddAttr<float>("spatial_scale",
W
wanghaox 已提交
129 130 131 132
                   "(float, default 1.0), "
                   "Multiplicative spatial scale factor "
                   "to translate ROI coords from their input scale "
                   "to the scale used when pooling.")
133
        .SetDefault(1.0);
W
wanghaox 已提交
134
    AddAttr<int>("pooled_height",
W
wanghaox 已提交
135 136
                 "(int, default 1), "
                 "The pooled output height.")
137
        .SetDefault(1);
W
wanghaox 已提交
138
    AddAttr<int>("pooled_width",
W
wanghaox 已提交
139 140
                 "(int, default 1), "
                 "The pooled output width.")
141
        .SetDefault(1);
W
wanghaox 已提交
142
    AddComment(R"DOC(
W
wanghaox 已提交
143
ROIPool operator
W
wanghaox 已提交
144 145 146 147 148 149 150 151 152 153 154

ROI Pooling for Faster-RCNN. The link below is a further introduction: 
https://stackoverflow.com/questions/43430056/what-is-roi-layer-in-fast-rcnn
    )DOC");
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
155
REGISTER_OPERATOR(roi_pool, ops::ROIPoolOp, ops::ROIPoolOpMaker,
156 157
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(roi_pool_grad, ops::ROIPoolGradOp);
W
wanghaox 已提交
158
REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
159 160 161
    roi_pool,
    ops::CPUROIPoolOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::CPUROIPoolOpKernel<paddle::platform::CPUDeviceContext, double>);
W
wanghaox 已提交
162 163
REGISTER_OP_CPU_KERNEL(
    roi_pool_grad,
Q
QI JUN 已提交
164 165
    ops::CPUROIPoolGradOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::CPUROIPoolOpKernel<paddle::platform::CPUDeviceContext, double>);