test_word2vec_book.py 11.1 KB
Newer Older
D
dzhwinter 已提交
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
L
Liu Yiqun 已提交
2 3
#
# Licensed under the Apache License, Version 2.0 (the "License");
D
dzhwinter 已提交
4 5
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import paddle
18
import paddle.fluid as fluid
19
from paddle.fluid.layers.device import get_places
Y
Yang Yu 已提交
20
import unittest
Y
Yang Yu 已提交
21
import os
22
import numpy as np
23 24
import math
import sys
Q
QI JUN 已提交
25

P
pangyoki 已提交
26 27
paddle.enable_static()

Y
Yang Yu 已提交
28

武毅 已提交
29
def train(use_cuda, is_sparse, is_parallel, save_dirname, is_local=True):
Y
Yang Yu 已提交
30 31 32 33 34
    PASS_NUM = 100
    EMBED_SIZE = 32
    HIDDEN_SIZE = 256
    N = 5
    BATCH_SIZE = 32
Y
Yang Yu 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
    IS_SPARSE = is_sparse

    def __network__(words):
        embed_first = fluid.layers.embedding(
            input=words[0],
            size=[dict_size, EMBED_SIZE],
            dtype='float32',
            is_sparse=IS_SPARSE,
            param_attr='shared_w')
        embed_second = fluid.layers.embedding(
            input=words[1],
            size=[dict_size, EMBED_SIZE],
            dtype='float32',
            is_sparse=IS_SPARSE,
            param_attr='shared_w')
        embed_third = fluid.layers.embedding(
            input=words[2],
            size=[dict_size, EMBED_SIZE],
            dtype='float32',
            is_sparse=IS_SPARSE,
            param_attr='shared_w')
        embed_forth = fluid.layers.embedding(
            input=words[3],
            size=[dict_size, EMBED_SIZE],
            dtype='float32',
            is_sparse=IS_SPARSE,
            param_attr='shared_w')

        concat_embed = fluid.layers.concat(
            input=[embed_first, embed_second, embed_third, embed_forth], axis=1)
        hidden1 = fluid.layers.fc(input=concat_embed,
                                  size=HIDDEN_SIZE,
                                  act='sigmoid')
        predict_word = fluid.layers.fc(input=hidden1,
                                       size=dict_size,
                                       act='softmax')
        cost = fluid.layers.cross_entropy(input=predict_word, label=words[4])
Y
Yu Yang 已提交
72
        avg_cost = fluid.layers.mean(cost)
73
        return avg_cost, predict_word
Y
Yang Yu 已提交
74 75 76 77 78 79 80 81 82 83

    word_dict = paddle.dataset.imikolov.build_dict()
    dict_size = len(word_dict)

    first_word = fluid.layers.data(name='firstw', shape=[1], dtype='int64')
    second_word = fluid.layers.data(name='secondw', shape=[1], dtype='int64')
    third_word = fluid.layers.data(name='thirdw', shape=[1], dtype='int64')
    forth_word = fluid.layers.data(name='forthw', shape=[1], dtype='int64')
    next_word = fluid.layers.data(name='nextw', shape=[1], dtype='int64')

L
Liu Yiqun 已提交
84
    if not is_parallel:
85
        avg_cost, predict_word = __network__(
Y
Yang Yu 已提交
86 87
            [first_word, second_word, third_word, forth_word, next_word])
    else:
X
Xin Pan 已提交
88
        raise NotImplementedError()
Y
Yang Yu 已提交
89

Y
Yang Yu 已提交
90
    sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
W
Wu Yi 已提交
91
    sgd_optimizer.minimize(avg_cost)
Y
Yang Yu 已提交
92 93 94 95 96 97 98 99 100 101

    train_reader = paddle.batch(
        paddle.dataset.imikolov.train(word_dict, N), BATCH_SIZE)

    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
    exe = fluid.Executor(place)
    feeder = fluid.DataFeeder(
        feed_list=[first_word, second_word, third_word, forth_word, next_word],
        place=place)

武毅 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
    def train_loop(main_program):
        exe.run(fluid.default_startup_program())

        for pass_id in range(PASS_NUM):
            for data in train_reader():
                avg_cost_np = exe.run(main_program,
                                      feed=feeder.feed(data),
                                      fetch_list=[avg_cost])
                if avg_cost_np[0] < 5.0:
                    if save_dirname is not None:
                        fluid.io.save_inference_model(save_dirname, [
                            'firstw', 'secondw', 'thirdw', 'forthw'
                        ], [predict_word], exe)
                    return
                if math.isnan(float(avg_cost_np[0])):
                    sys.exit("got NaN loss, training failed.")

        raise AssertionError("Cost is too large {0:2.2}".format(avg_cost_np[0]))

    if is_local:
        train_loop(fluid.default_main_program())
    else:
G
gongweibao 已提交
124 125
        port = os.getenv("PADDLE_PSERVER_PORT", "6174")
        pserver_ips = os.getenv("PADDLE_PSERVER_IPS")  # ip,ip...
武毅 已提交
126 127 128 129
        eplist = []
        for ip in pserver_ips.split(","):
            eplist.append(':'.join([ip, port]))
        pserver_endpoints = ",".join(eplist)  # ip:port,ip:port...
G
gongweibao 已提交
130
        trainers = int(os.getenv("PADDLE_TRAINERS"))
武毅 已提交
131
        current_endpoint = os.getenv("POD_IP") + ":" + port
G
gongweibao 已提交
132 133
        trainer_id = int(os.getenv("PADDLE_TRAINER_ID"))
        training_role = os.getenv("PADDLE_TRAINING_ROLE", "TRAINER")
武毅 已提交
134
        t = fluid.DistributeTranspiler()
Y
Yancey1989 已提交
135
        t.transpile(trainer_id, pservers=pserver_endpoints, trainers=trainers)
武毅 已提交
136 137 138 139 140 141 142 143
        if training_role == "PSERVER":
            pserver_prog = t.get_pserver_program(current_endpoint)
            pserver_startup = t.get_startup_program(current_endpoint,
                                                    pserver_prog)
            exe.run(pserver_startup)
            exe.run(pserver_prog)
        elif training_role == "TRAINER":
            train_loop(t.get_trainer_program())
Y
Yang Yu 已提交
144 145


L
Liu Yiqun 已提交
146 147 148 149 150 151 152
def infer(use_cuda, save_dirname=None):
    if save_dirname is None:
        return

    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
    exe = fluid.Executor(place)

153 154 155
    inference_scope = fluid.core.Scope()
    with fluid.scope_guard(inference_scope):
        # Use fluid.io.load_inference_model to obtain the inference program desc,
T
tianshuo78520a 已提交
156
        # the feed_target_names (the names of variables that will be fed
157 158 159 160 161 162 163 164
        # data using feed operators), and the fetch_targets (variables that
        # we want to obtain data from using fetch operators).
        [inference_program, feed_target_names,
         fetch_targets] = fluid.io.load_inference_model(save_dirname, exe)

        word_dict = paddle.dataset.imikolov.build_dict()
        dict_size = len(word_dict)

165 166 167 168 169
        # Setup inputs by creating 4 LoDTensors representing 4 words. Here each word
        # is simply an index to look up for the corresponding word vector and hence
        # the shape of word (base_shape) should be [1]. The recursive_sequence_lengths,
        # which is length-based level of detail (lod) of each LoDTensor, should be [[1]]
        # meaning there is only one level of detail and there is only one sequence of
170 171 172
        # one word on this level.
        # Note that recursive_sequence_lengths should be a list of lists.
        recursive_seq_lens = [[1]]
173
        base_shape = [1]
K
Kexin Zhao 已提交
174
        # The range of random integers is [low, high]
175
        first_word = fluid.create_random_int_lodtensor(
176
            recursive_seq_lens, base_shape, place, low=0, high=dict_size - 1)
177
        second_word = fluid.create_random_int_lodtensor(
178
            recursive_seq_lens, base_shape, place, low=0, high=dict_size - 1)
179
        third_word = fluid.create_random_int_lodtensor(
180
            recursive_seq_lens, base_shape, place, low=0, high=dict_size - 1)
181
        fourth_word = fluid.create_random_int_lodtensor(
182
            recursive_seq_lens, base_shape, place, low=0, high=dict_size - 1)
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199

        assert feed_target_names[0] == 'firstw'
        assert feed_target_names[1] == 'secondw'
        assert feed_target_names[2] == 'thirdw'
        assert feed_target_names[3] == 'forthw'

        # Construct feed as a dictionary of {feed_target_name: feed_target_data}
        # and results will contain a list of data corresponding to fetch_targets.
        results = exe.run(inference_program,
                          feed={
                              feed_target_names[0]: first_word,
                              feed_target_names[1]: second_word,
                              feed_target_names[2]: third_word,
                              feed_target_names[3]: fourth_word
                          },
                          fetch_list=fetch_targets,
                          return_numpy=False)
F
flame 已提交
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218

        def to_infer_tensor(lod_tensor):
            infer_tensor = fluid.core.PaddleTensor()
            infer_tensor.lod = lod_tensor.lod()
            infer_tensor.data = fluid.core.PaddleBuf(np.array(lod_tensor))
            infer_tensor.shape = lod_tensor.shape()
            infer_tensor.dtype = fluid.core.PaddleDType.INT64
            return infer_tensor

        infer_inputs = [first_word, second_word, third_word, fourth_word]
        infer_inputs = [to_infer_tensor(t) for t in infer_inputs]

        infer_config = fluid.core.NativeConfig()
        infer_config.model_dir = 'word2vec.inference.model'
        infer_config.use_gpu = use_cuda
        if use_cuda:
            infer_config.device = 0
            infer_config.fraction_of_gpu_memory = 0.15
        compiled_program = fluid.compiler.CompiledProgram(inference_program)
F
flame 已提交
219
        compiled_program._with_inference_optimize(infer_config)
F
flame 已提交
220 221
        assert compiled_program._is_inference is True
        infer_outputs = exe.run(compiled_program, feed=infer_inputs)
222
        np_data = np.array(results[0])
F
flame 已提交
223 224
        infer_out = infer_outputs[0].data.float_data()
        for a, b in zip(np_data[0], infer_out):
F
flame 已提交
225
            assert np.isclose(a, b), "a: {}, b: {}".format(a, b)
L
Liu Yiqun 已提交
226 227 228


def main(use_cuda, is_sparse, is_parallel):
229 230
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return
L
Liu Yiqun 已提交
231 232 233 234 235 236 237

    if not is_parallel:
        save_dirname = "word2vec.inference.model"
    else:
        save_dirname = None

    train(use_cuda, is_sparse, is_parallel, save_dirname)
238 239 240
    infer(use_cuda, save_dirname)


Y
Yang Yu 已提交
241
FULL_TEST = os.getenv('FULL_TEST',
Y
Yang Yu 已提交
242
                      '0').lower() in ['true', '1', 't', 'y', 'yes', 'on']
Y
Yang Yu 已提交
243
SKIP_REASON = "Only run minimum number of tests in CI server, to make CI faster"
Y
Yang Yu 已提交
244 245 246


class W2VTest(unittest.TestCase):
Y
Yang Yu 已提交
247 248 249
    pass


L
Liu Yiqun 已提交
250
def inject_test_method(use_cuda, is_sparse, is_parallel):
Y
Yang Yu 已提交
251 252
    fn_name = "test_{0}_{1}_{2}".format("cuda" if use_cuda else "cpu", "sparse"
                                        if is_sparse else "dense", "parallel"
L
Liu Yiqun 已提交
253
                                        if is_parallel else "normal")
Y
Yang Yu 已提交
254 255 256 257 258 259 260

    def __impl__(*args, **kwargs):
        prog = fluid.Program()
        startup_prog = fluid.Program()
        scope = fluid.core.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(prog, startup_prog):
L
Liu Yiqun 已提交
261 262 263 264
                main(
                    use_cuda=use_cuda,
                    is_sparse=is_sparse,
                    is_parallel=is_parallel)
Y
Yang Yu 已提交
265

266
    if (not fluid.core.is_compiled_with_cuda() or use_cuda) and is_sparse:
Y
Yang Yu 已提交
267 268 269 270 271 272 273
        fn = __impl__
    else:
        # skip the other test when on CI server
        fn = unittest.skipUnless(
            condition=FULL_TEST, reason=SKIP_REASON)(__impl__)

    setattr(W2VTest, fn_name, fn)
Y
Yang Yu 已提交
274 275


Y
Yang Yu 已提交
276 277
for use_cuda in (False, True):
    for is_sparse in (False, True):
X
fix  
Xin Pan 已提交
278
        for is_parallel in (False, ):
L
Liu Yiqun 已提交
279
            inject_test_method(use_cuda, is_sparse, is_parallel)
Y
Yang Yu 已提交
280 281 282

if __name__ == '__main__':
    unittest.main()