cluster_train_en.html 31.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10


<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
  <meta charset="utf-8">
  
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  
11
  <title>Distributed Training &mdash; PaddlePaddle  documentation</title>
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
  

  
  

  

  
  
    

  

  
  
    <link rel="stylesheet" href="../../../_static/css/theme.css" type="text/css" />
  

  
  
        <link rel="index" title="Index"
              href="../../../genindex.html"/>
        <link rel="search" title="Search" href="../../../search.html"/>
    <link rel="top" title="PaddlePaddle  documentation" href="../../../index.html"/>
        <link rel="up" title="HOW TO" href="../../index_en.html"/>
37
        <link rel="next" title="Cluster Training Using Fabric" href="fabric_en.html"/>
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
        <link rel="prev" title="Detail Description" href="../cmd_parameter/detail_introduction_en.html"/> 

  <link rel="stylesheet" href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" type="text/css" />
  <link rel="stylesheet" href="../../../_static/css/override.css" type="text/css" />
  <script>
  var _hmt = _hmt || [];
  (function() {
    var hm = document.createElement("script");
    hm.src = "//hm.baidu.com/hm.js?b9a314ab40d04d805655aab1deee08ba";
    var s = document.getElementsByTagName("script")[0]; 
    s.parentNode.insertBefore(hm, s);
  })();
  </script>

  

  
  <script src="../../../_static/js/modernizr.min.js"></script>

</head>

<body class="wy-body-for-nav" role="document">

  
  <header class="site-header">
    <div class="site-logo">
      <a href="/"><img src="../../../_static/images/PP_w.png"></a>
    </div>
    <div class="site-nav-links">
      <div class="site-menu">
68
        <a class="fork-on-github" href="https://github.com/PaddlePaddle/Paddle" target="_blank"><i class="fa fa-github"></i>Fork me on Github</a>
69 70 71 72 73 74 75 76 77 78 79 80
        <div class="language-switcher dropdown">
          <a type="button" data-toggle="dropdown">
            <span>English</span>
            <i class="fa fa-angle-up"></i>
            <i class="fa fa-angle-down"></i>
          </a>
          <ul class="dropdown-menu">
            <li><a href="/doc_cn">中文</a></li>
            <li><a href="/doc">English</a></li>
          </ul>
        </div>
        <ul class="site-page-links">
81
          <li><a href="/">Home</a></li>
82 83 84 85 86 87 88 89
        </ul>
      </div>
      <div class="doc-module">
        
        <ul class="current">
<li class="toctree-l1"><a class="reference internal" href="../../../getstarted/index_en.html">GET STARTED</a></li>
<li class="toctree-l1 current"><a class="reference internal" href="../../index_en.html">HOW TO</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../api/index_en.html">API</a></li>
90
<li class="toctree-l1"><a class="reference internal" href="../../../mobile/index_en.html">MOBILE</a></li>
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
</ul>

        
<div role="search">
  <form id="rtd-search-form" class="wy-form" action="../../../search.html" method="get">
    <input type="text" name="q" placeholder="Search docs" />
    <input type="hidden" name="check_keywords" value="yes" />
    <input type="hidden" name="area" value="default" />
  </form>
</div>        
      </div>
    </div>
  </header>
  
  <div class="main-content-wrap">

    
    <nav class="doc-menu-vertical" role="navigation">
        
          
          <ul class="current">
<li class="toctree-l1"><a class="reference internal" href="../../../getstarted/index_en.html">GET STARTED</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../../getstarted/build_and_install/index_en.html">Install and Build</a><ul>
114 115
<li class="toctree-l3"><a class="reference internal" href="../../../getstarted/build_and_install/pip_install_en.html">Install Using pip</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../getstarted/build_and_install/docker_install_en.html">Run in Docker Containers</a></li>
116
<li class="toctree-l3"><a class="reference internal" href="../../dev/build_en.html">Build using Docker</a></li>
117
<li class="toctree-l3"><a class="reference internal" href="../../../getstarted/build_and_install/build_from_source_en.html">Build from Sources</a></li>
118 119 120 121 122 123 124 125 126 127 128
</ul>
</li>
</ul>
</li>
<li class="toctree-l1 current"><a class="reference internal" href="../../index_en.html">HOW TO</a><ul class="current">
<li class="toctree-l2"><a class="reference internal" href="../cmd_parameter/index_en.html">Set Command-line Parameters</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../cmd_parameter/use_case_en.html">Use Case</a></li>
<li class="toctree-l3"><a class="reference internal" href="../cmd_parameter/arguments_en.html">Argument Outline</a></li>
<li class="toctree-l3"><a class="reference internal" href="../cmd_parameter/detail_introduction_en.html">Detail Description</a></li>
</ul>
</li>
129 130 131 132 133 134 135
<li class="toctree-l2 current"><a class="current reference internal" href="#">Distributed Training</a><ul>
<li class="toctree-l3"><a class="reference internal" href="fabric_en.html">fabric</a></li>
<li class="toctree-l3"><a class="reference internal" href="openmpi_en.html">openmpi</a></li>
<li class="toctree-l3"><a class="reference internal" href="k8s_en.html">kubernetes</a></li>
<li class="toctree-l3"><a class="reference internal" href="k8s_aws_en.html">kubernetes on AWS</a></li>
</ul>
</li>
136
<li class="toctree-l2"><a class="reference internal" href="../../dev/new_layer_en.html">Write New Layers</a></li>
137
<li class="toctree-l2"><a class="reference internal" href="../../dev/contribute_to_paddle_en.html">Contribute Code</a></li>
138
<li class="toctree-l2"><a class="reference internal" href="../../dev/write_docs_en.html">Contribute Documentation</a></li>
139 140 141 142
<li class="toctree-l2"><a class="reference internal" href="../../deep_model/rnn/index_en.html">RNN Models</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../deep_model/rnn/rnn_config_en.html">RNN Configuration</a></li>
</ul>
</li>
143 144 145 146
<li class="toctree-l2"><a class="reference internal" href="../../optimization/gpu_profiling_en.html">Tune GPU Performance</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../../api/index_en.html">API</a><ul>
147 148 149
<li class="toctree-l2"><a class="reference internal" href="../../../api/v2/model_configs.html">Model Configuration</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../../api/v2/config/activation.html">Activation</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../api/v2/config/layer.html">Layers</a></li>
150
<li class="toctree-l3"><a class="reference internal" href="../../../api/v2/config/evaluators.html">Evaluators</a></li>
151 152 153 154 155 156
<li class="toctree-l3"><a class="reference internal" href="../../../api/v2/config/optimizer.html">Optimizer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../api/v2/config/pooling.html">Pooling</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../api/v2/config/networks.html">Networks</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../api/v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
157 158 159 160 161 162
<li class="toctree-l2"><a class="reference internal" href="../../../api/v2/data.html">Data Reader Interface and DataSets</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../../api/v2/data/data_reader.html">Data Reader Interface</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../api/v2/data/image.html">Image Interface</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../api/v2/data/dataset.html">Dataset</a></li>
</ul>
</li>
163
<li class="toctree-l2"><a class="reference internal" href="../../../api/v2/run_logic.html">Training and Inference</a></li>
164 165 166 167 168 169 170 171 172 173 174 175 176
<li class="toctree-l2"><a class="reference internal" href="../../../api/v2/fluid.html">Fluid</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../../api/v2/fluid/layers.html">Layers</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../api/v2/fluid/data_feeder.html">DataFeeder</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../api/v2/fluid/executor.html">Executor</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../api/v2/fluid/initializer.html">Initializer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../api/v2/fluid/evaluator.html">Evaluator</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../api/v2/fluid/nets.html">Nets</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../api/v2/fluid/optimizer.html">Optimizer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../api/v2/fluid/param_attr.html">ParamAttr</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../api/v2/fluid/profiler.html">Profiler</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../api/v2/fluid/regularizer.html">Regularizer</a></li>
</ul>
</li>
177 178
</ul>
</li>
179 180
<li class="toctree-l1"><a class="reference internal" href="../../../mobile/index_en.html">MOBILE</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../../mobile/cross_compiling_for_android_en.html">Build PaddlePaddle for Android</a></li>
181
<li class="toctree-l2"><a class="reference internal" href="../../../mobile/cross_compiling_for_ios_en.html">Build PaddlePaddle for iOS</a></li>
182 183 184
<li class="toctree-l2"><a class="reference internal" href="../../../mobile/cross_compiling_for_raspberry_en.html">Build PaddlePaddle for Raspberry Pi</a></li>
</ul>
</li>
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
</ul>

        
    </nav>
    
    <section class="doc-content-wrap">

      

 







<div role="navigation" aria-label="breadcrumbs navigation">
  <ul class="wy-breadcrumbs">
      
        <li><a href="../../index_en.html">HOW TO</a> > </li>
      
207
    <li>Distributed Training</li>
208 209 210 211 212 213 214 215
  </ul>
</div>
      
      <div class="wy-nav-content" id="doc-content">
        <div class="rst-content">
          <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
           <div itemprop="articleBody">
            
216 217
  <div class="section" id="distributed-training">
<span id="distributed-training"></span><h1>Distributed Training<a class="headerlink" href="#distributed-training" title="Permalink to this headline"></a></h1>
218
<div class="section" id="introduction">
219
<span id="introduction"></span><h2>Introduction<a class="headerlink" href="#introduction" title="Permalink to this headline"></a></h2>
220 221 222 223 224 225 226 227 228 229 230
<p>In this article, we&#8217;ll explain how to run distributed training jobs with PaddlePaddle on different types of clusters. The diagram below shows the main architecture of a distributed trainning job:</p>
<p><img src="https://user-images.githubusercontent.com/13348433/31772146-41523d84-b511-11e7-8a12-a69fd136c283.png" width="500"></p>
<ul class="simple">
<li>Data shard: training data will be split into multiple partitions, trainers use the partitions of the whole dataset to do the training job.</li>
<li>Trainer: each trainer reads the data shard, and train the neural network. Then the trainer will upload calculated &#8220;gradients&#8221; to parameter servers, and wait for parameters to be optimized on the parameter server side. When that finishes, the trainer download optimized parameters and continues its training.</li>
<li>Parameter server: every parameter server stores part of the whole neural network model data. They will do optimization calculations when gradients are uploaded from trainers, and then send updated parameters to trainers.</li>
</ul>
<p>PaddlePaddle can support both synchronize stochastic gradient descent (SGD) and asynchronous SGD.</p>
<p>When training with synchronize SGD, PaddlePaddle uses an internal &#8220;synchronize barrier&#8221; which makes gradients update and parameter download in strict order. On the other hand, asynchronous SGD won&#8217;t wait for all trainers to finish upload at a single step, this will increase the parallelism of distributed training: parameter servers do not depend on each other, they&#8217;ll do parameter optimization concurrently. Parameter servers will not wait for trainers, so trainers will also do their work concurrently. But asynchronous SGD will introduce more randomness and noises in the gradient.</p>
</div>
<div class="section" id="preparations">
231
<span id="preparations"></span><h2>Preparations<a class="headerlink" href="#preparations" title="Permalink to this headline"></a></h2>
232 233
<ol class="simple">
<li>Prepare your computer cluster. It&#8217;s normally a bunch of Linux servers connected by LAN. Each server will be assigned a unique IP address. The computers in the cluster can be called &#8220;nodes&#8221;.</li>
234
<li>Install PaddlePaddle on every node. If you are going to take advantage of GPU cards, you&#8217;ll also need to install proper driver and CUDA libraries. To install PaddlePaddle please read <a class="reference external" href="http://www.paddlepaddle.org/docs/develop/documentation/en/getstarted/build_and_install/index_en.html">this build and install</a> document. We strongly recommend using <a class="reference external" href="http://www.paddlepaddle.org/docs/develop/documentation/en/getstarted/build_and_install/docker_install_en.html">Docker installation</a>.</li>
235
</ol>
236 237 238 239 240 241 242 243 244 245 246 247 248 249
<p>After installation, you can check the version by typing the below command (run a docker container  if using docker: <code class="docutils literal"><span class="pre">docker</span> <span class="pre">run</span> <span class="pre">-it</span> <span class="pre">paddlepaddle/paddle:[tag]</span> <span class="pre">/bin/bash</span></code>):</p>
<div class="highlight-bash"><div class="highlight"><pre><span></span>$ paddle version
PaddlePaddle <span class="m">0</span>.10.0rc, compiled with
    with_avx: ON
    with_gpu: OFF
    with_double: OFF
    with_python: ON
    with_rdma: OFF
    with_timer: OFF
</pre></div>
</div>
<p>We&#8217;ll take <code class="docutils literal"><span class="pre">doc/howto/usage/cluster/src/word2vec</span></code> as an example to introduce distributed training using PaddlePaddle v2 API.</p>
</div>
<div class="section" id="command-line-arguments">
250
<span id="command-line-arguments"></span><h2>Command-line arguments<a class="headerlink" href="#command-line-arguments" title="Permalink to this headline"></a></h2>
251
<div class="section" id="starting-parameter-server">
252
<span id="starting-parameter-server"></span><h3>Starting parameter server<a class="headerlink" href="#starting-parameter-server" title="Permalink to this headline"></a></h3>
253 254 255 256 257 258 259 260
<p>Type the below command to start a parameter server which will wait for trainers to connect:</p>
<div class="highlight-bash"><div class="highlight"><pre><span></span>$ paddle pserver --port<span class="o">=</span><span class="m">7164</span> --ports_num<span class="o">=</span><span class="m">1</span> --ports_num_for_sparse<span class="o">=</span><span class="m">1</span> --num_gradient_servers<span class="o">=</span><span class="m">1</span>
</pre></div>
</div>
<p>If you wish to run parameter servers in background, and save a log file, you can type:</p>
<div class="highlight-bash"><div class="highlight"><pre><span></span>$ stdbuf -oL /usr/bin/nohup paddle pserver --port<span class="o">=</span><span class="m">7164</span> --ports_num<span class="o">=</span><span class="m">1</span> --ports_num_for_sparse<span class="o">=</span><span class="m">1</span> --num_gradient_servers<span class="o">=</span><span class="m">1</span> <span class="p">&amp;</span>&gt; pserver.log
</pre></div>
</div>
261 262 263 264
<p>Parameter Description</p>
<ul class="simple">
<li>port: <strong>required, default 7164</strong>, port which parameter server will listen on. If ports_num greater than 1, parameter server will listen on multiple ports for more network throughput.</li>
<li>ports_num: <strong>required, default 1</strong>, total number of ports will listen on.</li>
265
<li>ports_num_for_sparse: <strong>required, default 0</strong>, number of ports which serves sparse parameter update.</li>
266 267
<li>num_gradient_servers: <strong>required, default 1</strong>, total number of gradient servers.</li>
</ul>
268 269
</div>
<div class="section" id="starting-trainer">
270
<span id="starting-trainer"></span><h3>Starting trainer<a class="headerlink" href="#starting-trainer" title="Permalink to this headline"></a></h3>
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
<p>Type the command below to start the trainer(name the file whatever you want, like &#8220;train.py&#8221;)</p>
<div class="highlight-bash"><div class="highlight"><pre><span></span>$ python train.py
</pre></div>
</div>
<p>Trainers&#8217; network need to be connected with parameter servers&#8217; network to finish the job. Trainers need to know port and IPs to locate parameter servers. You can pass arguments to trainers through <a class="reference external" href="https://en.wikipedia.org/wiki/Environment_variable">environment variables</a> or pass to <code class="docutils literal"><span class="pre">paddle.init()</span></code> function. Arguments passed to the <code class="docutils literal"><span class="pre">paddle.init()</span></code> function will overwrite environment variables.</p>
<p>Use environment viriables:</p>
<div class="highlight-bash"><div class="highlight"><pre><span></span><span class="nb">export</span> <span class="nv">PADDLE_INIT_USE_GPU</span><span class="o">=</span>False
<span class="nb">export</span> <span class="nv">PADDLE_INIT_TRAINER_COUNT</span><span class="o">=</span><span class="m">1</span>
<span class="nb">export</span> <span class="nv">PADDLE_INIT_PORT</span><span class="o">=</span><span class="m">7164</span>
<span class="nb">export</span> <span class="nv">PADDLE_INIT_PORTS_NUM</span><span class="o">=</span><span class="m">1</span>
<span class="nb">export</span> <span class="nv">PADDLE_INIT_PORTS_NUM_FOR_SPARSE</span><span class="o">=</span><span class="m">1</span>
<span class="nb">export</span> <span class="nv">PADDLE_INIT_NUM_GRADIENT_SERVERS</span><span class="o">=</span><span class="m">1</span>
<span class="nb">export</span> <span class="nv">PADDLE_INIT_TRAINER_ID</span><span class="o">=</span><span class="m">0</span>
<span class="nb">export</span> <span class="nv">PADDLE_INIT_PSERVERS</span><span class="o">=</span><span class="m">127</span>.0.0.1
python train.py
</pre></div>
</div>
<p>Pass arguments:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">paddle</span><span class="o">.</span><span class="n">init</span><span class="p">(</span>
        <span class="n">use_gpu</span><span class="o">=</span><span class="bp">False</span><span class="p">,</span>
        <span class="n">trainer_count</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
        <span class="n">port</span><span class="o">=</span><span class="mi">7164</span><span class="p">,</span>
        <span class="n">ports_num</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
        <span class="n">ports_num_for_sparse</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
        <span class="n">num_gradient_servers</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
        <span class="n">trainer_id</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span>
        <span class="n">pservers</span><span class="o">=</span><span class="s2">&quot;127.0.0.1&quot;</span><span class="p">)</span>
</pre></div>
</div>
300 301 302 303 304 305
<p>Parameter Description</p>
<ul class="simple">
<li>use_gpu: <strong>optional, default False</strong>, set to &#8220;True&#8221; to enable GPU training.</li>
<li>trainer_count: <strong>required, default 1</strong>, total count of trainers in the training job.</li>
<li>port: <strong>required, default 7164</strong>, port to connect to parameter server.</li>
<li>ports_num: <strong>required, default 1</strong>, number of ports for communication.</li>
306
<li>ports_num_for_sparse: <strong>required, default 0</strong>, number of ports for sparse type caculation.</li>
307 308 309 310
<li>num_gradient_servers: <strong>required, default 1</strong>, total number of gradient server.</li>
<li>trainer_id: <strong>required, default 0</strong>, ID for every trainer, start from 0.</li>
<li>pservers: <strong>required, default 127.0.0.1</strong>, list of IPs of parameter servers, separated by &#8221;,&#8221;.</li>
</ul>
311 312
</div>
<div class="section" id="prepare-training-dataset">
313
<span id="prepare-training-dataset"></span><h3>Prepare Training Dataset<a class="headerlink" href="#prepare-training-dataset" title="Permalink to this headline"></a></h3>
314 315 316 317 318 319 320 321 322 323
<p>Here&#8217;s some example code <a class="reference external" href="https://github.com/PaddlePaddle/Paddle/tree/develop/doc/howto/usage/cluster/src/word2vec/prepare.py">prepare.py</a>, it will download public <code class="docutils literal"><span class="pre">imikolov</span></code> dataset and split it into multiple files according to job parallelism(trainers count). Modify <code class="docutils literal"><span class="pre">SPLIT_COUNT</span></code> at the begining of <code class="docutils literal"><span class="pre">prepare.py</span></code> to change the count of output files.</p>
<p>In the real world, we often use <code class="docutils literal"><span class="pre">MapReduce</span></code> job&#8217;s output as training data, so there will be lots of files. You can use <code class="docutils literal"><span class="pre">mod</span></code> to assign training file to trainers:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">os</span>
<span class="n">train_list</span> <span class="o">=</span> <span class="p">[]</span>
<span class="n">flist</span> <span class="o">=</span> <span class="n">os</span><span class="o">.</span><span class="n">listdir</span><span class="p">(</span><span class="s2">&quot;/train_data/&quot;</span><span class="p">)</span>
<span class="k">for</span> <span class="n">f</span> <span class="ow">in</span> <span class="n">flist</span><span class="p">:</span>
  <span class="n">suffix</span> <span class="o">=</span> <span class="nb">int</span><span class="p">(</span><span class="n">f</span><span class="o">.</span><span class="n">split</span><span class="p">(</span><span class="s2">&quot;-&quot;</span><span class="p">)[</span><span class="mi">1</span><span class="p">])</span>
  <span class="k">if</span> <span class="n">suffix</span> <span class="o">%</span> <span class="n">TRAINER_COUNT</span> <span class="o">==</span> <span class="n">TRAINER_ID</span><span class="p">:</span>
    <span class="n">train_list</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">f</span><span class="p">)</span>
</pre></div>
324
</div>
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
<p>Example code <code class="docutils literal"><span class="pre">prepare.py</span></code> will split training data and testing data into 3 files with digital suffix like <code class="docutils literal"><span class="pre">-00000</span></code>, <code class="docutils literal"><span class="pre">-00001</span></code> and<code class="docutils literal"><span class="pre">-00002</span></code>:</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="n">train</span><span class="o">.</span><span class="n">txt</span>
<span class="n">train</span><span class="o">.</span><span class="n">txt</span><span class="o">-</span><span class="mi">00000</span>
<span class="n">train</span><span class="o">.</span><span class="n">txt</span><span class="o">-</span><span class="mi">00001</span>
<span class="n">train</span><span class="o">.</span><span class="n">txt</span><span class="o">-</span><span class="mi">00002</span>
<span class="n">test</span><span class="o">.</span><span class="n">txt</span>
<span class="n">test</span><span class="o">.</span><span class="n">txt</span><span class="o">-</span><span class="mi">00000</span>
<span class="n">test</span><span class="o">.</span><span class="n">txt</span><span class="o">-</span><span class="mi">00001</span>
<span class="n">test</span><span class="o">.</span><span class="n">txt</span><span class="o">-</span><span class="mi">00002</span>
</pre></div>
</div>
<p>When job started, every trainer needs to get it&#8217;s own part of data. In some distributed systems a storage service will be provided, so the date under that path can be accessed by all the trainer nodes. Without the storage service, you must copy the training data to each trainer node.</p>
<p>Different training jobs may have different data format and <code class="docutils literal"><span class="pre">reader()</span></code> function, developers may need to write different data prepare scripts and <code class="docutils literal"><span class="pre">reader()</span></code> functions for their job.</p>
</div>
<div class="section" id="prepare-training-program">
340
<span id="prepare-training-program"></span><h3>Prepare Training program<a class="headerlink" href="#prepare-training-program" title="Permalink to this headline"></a></h3>
341 342
<p>We&#8217;ll create a <em>workspace</em> directory on each node, storing your training program, dependencies, mounted or downloaded dataset directory.</p>
<p>Your workspace may looks like:</p>
343
<div class="highlight-default"><div class="highlight"><pre><span></span>.
344 345 346 347 348 349 350 351 352 353 354
|-- my_lib.py
|-- word_dict.pickle
|-- train.py
|-- train_data_dir/
|   |-- train.txt-00000
|   |-- train.txt-00001
|   |-- train.txt-00002
`-- test_data_dir/
    |-- test.txt-00000
    |-- test.txt-00001
    `-- test.txt-00002
355 356
</pre></div>
</div>
357 358 359 360 361
<ul>
<li><p class="first"><code class="docutils literal"><span class="pre">my_lib.py</span></code>: user defined libraries, like PIL libs. This is optional.</p>
</li>
<li><p class="first"><code class="docutils literal"><span class="pre">word_dict.pickle</span></code>: dict file for training word embeding.</p>
</li>
362
<li><p class="first"><code class="docutils literal"><span class="pre">train.py</span></code>: training program. Sample code: <a class="reference external" href="https://github.com/PaddlePaddle/Paddle/tree/develop/doc/howto/usage/cluster/src/word2vec/api_train_v2_cluster.py">api_train_v2_cluster.py</a>. <strong><em>NOTE:</em></strong> You may need to modify the head part of <code class="docutils literal"><span class="pre">train.py</span></code> when using different cluster platform to retrive configuration environment variables:</p>
363 364 365 366 367
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">cluster_train_file</span> <span class="o">=</span> <span class="s2">&quot;./train_data_dir/train/train.txt&quot;</span>
<span class="n">cluster_test_file</span> <span class="o">=</span> <span class="s2">&quot;./test_data_dir/test/test.txt&quot;</span>
<span class="n">node_id</span> <span class="o">=</span> <span class="n">os</span><span class="o">.</span><span class="n">getenv</span><span class="p">(</span><span class="s2">&quot;OMPI_COMM_WORLD_RANK&quot;</span><span class="p">)</span>
<span class="k">if</span> <span class="ow">not</span> <span class="n">node_id</span><span class="p">:</span>
    <span class="k">raise</span> <span class="ne">EnvironmentError</span><span class="p">(</span><span class="s2">&quot;must provied OMPI_COMM_WORLD_RANK&quot;</span><span class="p">)</span>
368 369
</pre></div>
</div>
370 371 372 373 374 375 376 377 378
</li>
<li><p class="first"><code class="docutils literal"><span class="pre">train_data_dir</span></code>: containing training data. Mount from storage service or copy trainning data to here.</p>
</li>
<li><p class="first"><code class="docutils literal"><span class="pre">test_data_dir</span></code>: containing testing data.</p>
</li>
</ul>
</div>
</div>
<div class="section" id="use-cluster-platforms-or-cluster-management-tools">
379
<span id="use-cluster-platforms-or-cluster-management-tools"></span><h2>Use cluster platforms or cluster management tools<a class="headerlink" href="#use-cluster-platforms-or-cluster-management-tools" title="Permalink to this headline"></a></h2>
380 381 382 383 384 385 386 387 388
<p>PaddlePaddle supports running jobs on several platforms including:</p>
<ul class="simple">
<li><a class="reference external" href="http://kubernetes.io">Kubernetes</a> open-source system for automating deployment, scaling, and management of containerized applications from Google.</li>
<li><a class="reference external" href="https://www.open-mpi.org">OpenMPI</a> Mature high performance parallel computing framework.</li>
<li><a class="reference external" href="http://www.fabfile.org">Fabric</a> A cluster management tool. Write scripts to submit jobs or manage the cluster.</li>
</ul>
<p>We&#8217;ll introduce cluster job management on these platforms. The examples can be found under <a class="reference external" href="https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/scripts/cluster_train_v2">cluster_train_v2</a>.</p>
<p>These cluster platforms provide API or environment variables for training processes, when the job is dispatched to different nodes. Like node ID, IP or total number of nodes etc.</p>
</div>
389 390
<div class="section" id="use-different-clusters">
<span id="use-different-clusters"></span><h2>Use different clusters<a class="headerlink" href="#use-different-clusters" title="Permalink to this headline"></a></h2>
391 392 393 394 395 396
<div class="toctree-wrapper compound">
<ul>
<li class="toctree-l1"><a class="reference internal" href="fabric_en.html">fabric</a></li>
<li class="toctree-l1"><a class="reference internal" href="openmpi_en.html">openmpi</a></li>
<li class="toctree-l1"><a class="reference internal" href="k8s_en.html">kubernetes</a></li>
<li class="toctree-l1"><a class="reference internal" href="k8s_aws_en.html">kubernetes on AWS</a></li>
397
</ul>
398
</div>
399
</div>
400 401 402 403 404 405 406 407 408
</div>


           </div>
          </div>
          <footer>
  
    <div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
      
409
        <a href="fabric_en.html" class="btn btn-neutral float-right" title="Cluster Training Using Fabric" accesskey="n">Next <span class="fa fa-arrow-circle-right"></span></a>
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
      
      
        <a href="../cmd_parameter/detail_introduction_en.html" class="btn btn-neutral" title="Detail Description" accesskey="p"><span class="fa fa-arrow-circle-left"></span> Previous</a>
      
    </div>
  

  <hr/>

  <div role="contentinfo">
    <p>
        &copy; Copyright 2016, PaddlePaddle developers.

    </p>
  </div>
  Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>. 

</footer>

        </div>
      </div>

    </section>

  </div>
  


  

    <script type="text/javascript">
        var DOCUMENTATION_OPTIONS = {
            URL_ROOT:'../../../',
            VERSION:'',
            COLLAPSE_INDEX:false,
            FILE_SUFFIX:'.html',
446 447
            HAS_SOURCE:  true,
            SOURCELINK_SUFFIX: ".txt",
448 449 450 451 452
        };
    </script>
      <script type="text/javascript" src="../../../_static/jquery.js"></script>
      <script type="text/javascript" src="../../../_static/underscore.js"></script>
      <script type="text/javascript" src="../../../_static/doctools.js"></script>
453
      <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
454 455 456 457 458 459 460 461 462 463 464 465 466
       
  

  
  
    <script type="text/javascript" src="../../../_static/js/theme.js"></script>
  
  
  <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" crossorigin="anonymous"></script>
  <script src="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/js/perfect-scrollbar.jquery.min.js"></script>
  <script src="../../../_static/js/paddle_doc_init.js"></script> 

</body>
467
</html>