test_LayerGrad.cpp 56.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <gtest/gtest.h>
#include <string>
Q
qijun 已提交
17
#include <vector>
Z
zhangjinchao01 已提交
18
#include "ModelConfig.pb.h"
Q
qijun 已提交
19
#include "paddle/gserver/layers/DataLayer.h"
20
#include "paddle/math/MathUtils.h"
Y
Yu Yang 已提交
21
#include "paddle/trainer/Trainer.h"
Z
zhangjinchao01 已提交
22 23

#include "LayerGradUtil.h"
24
#include "paddle/testing/TestUtil.h"
Z
zhangjinchao01 已提交
25 26 27 28

using namespace paddle;  // NOLINT
using namespace std;     // NOLINT

29 30 31 32 33
DECLARE_bool(use_gpu);
DECLARE_int32(gpu_id);
DECLARE_double(checkgrad_eps);
DECLARE_bool(thread_local_rand_use_global_seed);
DECLARE_bool(prev_batch_state);
Z
zhangjinchao01 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53

TEST(Operator, dot_mul) {
  TestConfig config;
  config.layerConfig.set_size(10);

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 10, 0});
  config.inputDefs.push_back({INPUT_DATA, "layer_1", 10, 0});
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();

  OperatorConfig& operatorConf = *config.layerConfig.add_operator_confs();
  operatorConf.set_type("dot_mul");
  operatorConf.set_dotmul_scale(-1);

  testOperatorGrad(config, operatorConf, 100, false, false);
}

TEST(Projection, context) {
  for (auto contextStart : {-5, -3, -1, 0, 3}) {
    for (auto contextLength : {1, 2, 5, 7}) {
54
      for (auto batchSize : {1, 2, 5, 20, 50}) {
Z
zhangjinchao01 已提交
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
        for (auto trainablePadding : {false, true}) {
          LOG(INFO) << " contextStart=" << contextStart
                    << " contextLength=" << contextLength
                    << " batchSize=" << batchSize
                    << " trainablePadding=" << trainablePadding;
          ProjectionConfig conf;
          conf.set_type("context");
          conf.set_input_size(10);
          conf.set_context_start(contextStart);
          conf.set_context_length(contextLength);
          conf.set_trainable_padding(trainablePadding);
          conf.set_output_size(conf.context_length() * conf.input_size());
          int pad =
              std::max(0, -conf.context_start()) +
              std::max(0, conf.context_start() + conf.context_length() - 1);
          for (auto useGpu : {false, true}) {
            testProjectionGrad(
72 73 74 75
                conf,
                INPUT_SEQUENCE_DATA,
                trainablePadding ? conf.input_size() * pad : 0,
                batchSize,
Z
zhangjinchao01 已提交
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
                useGpu,
                contextStart + contextLength <= 1);  // = testState
          }
        }
      }
    }
  }
}

TEST(Projection, trans_fc) {
  ProjectionConfig conf;
  conf.set_type("trans_fc");
  conf.set_input_size(50);
  conf.set_output_size(20);
  for (auto useGpu : {false, true}) {
91 92 93 94 95
    testProjectionGrad(conf,
                       INPUT_DATA,
                       /* parameterSize */ 1000,
                       /* batchSize */ 100,
                       useGpu);
Z
zhangjinchao01 已提交
96 97 98 99 100 101 102 103 104
  }
}

TEST(Projection, fc) {
  ProjectionConfig conf;
  conf.set_type("fc");
  conf.set_input_size(10);
  conf.set_output_size(20);
  for (auto useGpu : {false, true}) {
105 106 107 108 109
    testProjectionGrad(conf,
                       INPUT_DATA,
                       /* parameterSize */ 200,
                       /* batchSize */ 100,
                       useGpu);
Z
zhangjinchao01 已提交
110 111 112 113 114 115 116 117 118
  }
}

TEST(Projection, dot_mul) {
  ProjectionConfig conf;
  conf.set_type("dot_mul");
  conf.set_input_size(20);
  conf.set_output_size(20);
  for (auto useGpu : {false, true}) {
119 120 121 122 123
    testProjectionGrad(conf,
                       INPUT_DATA,
                       /* parameterSize */ 20,
                       /* batchSize */ 100,
                       useGpu);
Z
zhangjinchao01 已提交
124 125 126 127 128 129 130 131 132
  }
}

TEST(Projection, table) {
  ProjectionConfig conf;
  conf.set_type("table");
  conf.set_input_size(10);
  conf.set_output_size(20);
  for (auto useGpu : {false, true}) {
133 134 135 136 137
    testProjectionGrad(conf,
                       INPUT_LABEL,
                       /* parameterSize */ 200,
                       /* batchSize */ 100,
                       useGpu);
Z
zhangjinchao01 已提交
138 139 140 141 142 143 144 145 146
  }
}

TEST(Projection, identity) {
  ProjectionConfig conf;
  conf.set_type("identity");
  conf.set_input_size(10);
  conf.set_output_size(10);
  for (auto useGpu : {false, true}) {
147 148 149 150 151
    testProjectionGrad(conf,
                       INPUT_DATA,
                       /* parameterSize */ 0,
                       /* batchSize */ 100,
                       useGpu);
Z
zhangjinchao01 已提交
152 153 154
  }
}

X
xuwei06 已提交
155 156 157 158 159 160
TEST(Projection, scaling) {
  ProjectionConfig conf;
  conf.set_type("scaling");
  conf.set_input_size(10);
  conf.set_output_size(10);
  for (auto useGpu : {false}) {
161 162 163 164 165
    testProjectionGrad(conf,
                       INPUT_DATA,
                       /* parameterSize */ 1,
                       /* batchSize */ 100,
                       useGpu);
X
xuwei06 已提交
166 167 168
  }
}

W
wangyang59 已提交
169
void testProjectionConv(size_t groups, bool isDeconv) {
170
  const int NUM_FILTERS = 18;
171
  const int FILTER_SIZE = 2;
W
wangyang59 已提交
172
  const int FILTER_SIZE_Y = 4;
173 174 175 176
  const int CHANNELS = 3;
  const int IMAGE_SIZE = 16;

  ProjectionConfig conf;
W
wangyang59 已提交
177 178 179 180 181
  if (isDeconv) {
    conf.set_type("convt");
  } else {
    conf.set_type("conv");
  }
182 183 184 185 186 187 188 189 190 191
  conf.set_num_filters(NUM_FILTERS);

  ConvConfig* conv = conf.mutable_conv_conf();
  conv->set_filter_size(FILTER_SIZE);
  conv->set_filter_size_y(FILTER_SIZE_Y);
  conv->set_channels(CHANNELS);
  conv->set_padding(0);
  conv->set_padding_y(1);
  conv->set_stride(2);
  conv->set_stride_y(2);
192
  conv->set_groups(groups);
W
wangyang59 已提交
193 194 195 196 197
  if (isDeconv) {
    conv->set_filter_channels(NUM_FILTERS / conv->groups());
  } else {
    conv->set_filter_channels(conv->channels() / conv->groups());
  }
198
  conv->set_img_size(IMAGE_SIZE);
199 200 201 202 203 204 205 206 207 208
  int output_x = outputSize(conv->img_size(),
                            conv->filter_size(),
                            conv->padding(),
                            conv->stride(),
                            /* caffeMode */ true);
  int output_y = outputSize(conv->img_size(),
                            conv->filter_size_y(),
                            conv->padding_y(),
                            conv->stride_y(),
                            /* caffeMode */ true);
209
  conv->set_output_x(output_x);
W
wangyang59 已提交
210 211 212 213 214 215 216 217
  conv->set_output_y(output_y);
  if (isDeconv) {
    conf.set_input_size(output_x * output_y * CHANNELS);
    conf.set_output_size(IMAGE_SIZE * IMAGE_SIZE * NUM_FILTERS);
  } else {
    conf.set_input_size(IMAGE_SIZE * IMAGE_SIZE * CHANNELS);
    conf.set_output_size(output_x * output_y * NUM_FILTERS);
  }
218

L
Luo Tao 已提交
219 220 221 222 223 224 225 226 227
  testProjectionGrad(conf,
                     INPUT_DATA,
                     /* parameterSize */ NUM_FILTERS * CHANNELS * FILTER_SIZE *
                         FILTER_SIZE_Y / groups,
                     /* batchSize */ 100,
                     true,
                     false,
                     NUM_FILTERS,
                     true);
228
}
229

230 231
#ifndef PADDLE_ONLY_CPU
TEST(Projection, conv) {
W
wangyang59 已提交
232 233 234 235 236 237
  /// test ConvProjection
  testProjectionConv(1, false);
  testProjectionConv(3, false);
  /// test ConvTransProjection
  testProjectionConv(1, true);
  testProjectionConv(3, true);
238
}
239 240
#endif

L
Update  
liaogang 已提交
241 242 243 244 245 246
TEST(Layer, BilinearInterpLayer) {
  TestConfig config;
  config.layerConfig.set_type("bilinear_interp");
  config.biasSize = 0;
  config.inputDefs.push_back({INPUT_DATA, "layer_0", 4096, 0});

L
liaogang 已提交
247 248
  LayerInputConfig* input = config.layerConfig.add_inputs();
  BilinearInterpConfig* bilinear = input->mutable_bilinear_interp_conf();
L
Luo Tao 已提交
249 250 251 252
  ImageConfig* image = bilinear->mutable_image_conf();
  image->set_img_size(32);
  image->set_img_size_y(32);
  image->set_channels(4);
L
liaogang 已提交
253

L
liaogang 已提交
254 255 256 257 258 259 260
  for (auto useGpu : {false, true}) {
    for (auto outSize : {32, 64}) {
      bilinear->set_out_size_x(outSize);
      bilinear->set_out_size_y(outSize);
      testLayerGrad(config, "bilinear_interp", 10, false, useGpu);
    }
  }
L
Update  
liaogang 已提交
261 262
}

Z
zhangjinchao01 已提交
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
TEST(Layer, concat) {
  TestConfig config;
  config.biasSize = 0;
  config.layerConfig.set_type("concat");
  config.layerConfig.set_size(15);
  config.layerConfig.set_active_type("sigmoid");

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 5, 0});
  config.layerConfig.add_inputs();
  config.inputDefs.push_back({INPUT_DATA, "layer_1", 10, 0});
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
    testLayerGrad(config, "concat", 100, false, useGpu);
  }
}

TEST(Layer, AddtoLayer) {
  TestConfig config;
  config.biasSize = 0;
  config.layerConfig.set_type("addto");
  config.layerConfig.set_size(10);
  config.layerConfig.set_active_type("sigmoid");

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 10, 0});
  config.layerConfig.add_inputs();
  config.inputDefs.push_back({INPUT_DATA, "layer_1", 10, 0});
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
    testLayerGrad(config, "addto", 100, false, useGpu);
  }
}

TEST(Layer, CTCLayer) {
  TestConfig config;
  config.layerConfig.set_type("ctc");
  config.layerConfig.set_norm_by_times(false);
  config.layerConfig.set_size(10);
  config.biasSize = 0;

  config.inputDefs.push_back({INPUT_SEQUENCE_DATA, "layer_0", 10, 0});
  config.inputDefs.push_back({INPUT_SEQUENCE_LABEL, "layer_1", 10, 0});
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
310 311 312 313 314
    testLayerGrad(config,
                  "ctc",
                  100,
                  /* trans */ false, /* useGpu */
                  useGpu);
Z
zhangjinchao01 已提交
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
  }
}

TEST(Layer, cosSimLayer) {
  TestConfig config;
  config.layerConfig.set_type("cos");
  config.layerConfig.set_size(1);
  config.biasSize = 0;

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 50, 0});
  config.inputDefs.push_back({INPUT_DATA, "layer_1", 50, 0});
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
    testLayerGrad(config, "cos", 100, false, useGpu);
  }
}

TEST(Layer, CosSimVecMatLayer) {
  TestConfig config;
  config.layerConfig.set_type("cos_vm");
  config.layerConfig.set_size(5);  // output size
  config.layerConfig.set_cos_scale(2.0);

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 20, 0});
  config.layerConfig.add_inputs();
  config.inputDefs.push_back({INPUT_DATA, "layer_1", 100, 0});
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
    testLayerGrad(config, "cos_vm", 100, false, useGpu);
  }
}

void testConvLayer(const string& type, bool trans, bool useGpu) {
  TestConfig config;
  config.biasSize = 16;
  config.layerConfig.set_type(type);
  config.layerConfig.set_num_filters(16);
  config.layerConfig.set_partial_sum(1);
  config.layerConfig.set_shared_biases(true);

L
Luo Tao 已提交
358
  config.inputDefs.push_back({INPUT_DATA, "layer_0", 384, 288});
Z
zhangjinchao01 已提交
359 360 361 362 363 364 365 366 367 368 369 370
  LayerInputConfig* input = config.layerConfig.add_inputs();
  ConvConfig* conv = input->mutable_conv_conf();
  conv->set_filter_size(2);
  conv->set_filter_size_y(3);
  conv->set_channels(3);
  conv->set_padding(0);
  conv->set_padding_y(1);
  conv->set_stride(2);
  conv->set_stride_y(2);
  conv->set_groups(1);
  conv->set_filter_channels(conv->channels() / conv->groups());
  conv->set_img_size(16);
L
Luo Tao 已提交
371
  conv->set_img_size_y(8);
372 373 374 375
  conv->set_output_x(outputSize(conv->img_size(),
                                conv->filter_size(),
                                conv->padding(),
                                conv->stride(),
376
                                /* caffeMode */ true));
L
Luo Tao 已提交
377 378 379 380
  conv->set_output_y(outputSize(conv->img_size_y(),
                                conv->filter_size_y(),
                                conv->padding_y(),
                                conv->stride_y(),
L
Luo Tao 已提交
381 382
                                /* caffeMode */ true));
  config.layerConfig.set_size(conv->output_x() * conv->output_y() *
Z
zhangjinchao01 已提交
383 384 385
                              config.layerConfig.num_filters());

  testLayerGrad(config, "conv", 100, trans, useGpu);
386 387
  // Use small batch_size and useWeight=true to test biasGrad
  testLayerGrad(config, "conv", 2, trans, useGpu, true, 0.02);
Z
zhangjinchao01 已提交
388 389 390 391 392 393 394 395 396 397
}

TEST(Layer, convLayer) {
  testConvLayer("exconv", /* trans= */ false, /* useGpu= */ false);
#ifndef PADDLE_ONLY_CPU
  testConvLayer("exconv", /* trans= */ false, /* useGpu= */ true);
  testConvLayer("cudnn_conv", /* trans= */ false, /* useGpu= */ true);
#endif
}

W
wangyang59 已提交
398 399 400 401 402 403 404 405
void testConvTransLayer(const string& type, bool trans, bool useGpu) {
  TestConfig config;
  config.biasSize = 3;
  config.layerConfig.set_type(type);
  config.layerConfig.set_num_filters(3);
  config.layerConfig.set_partial_sum(1);
  config.layerConfig.set_shared_biases(true);

W
wangyang59 已提交
406
  config.inputDefs.push_back({INPUT_DATA, "layer_0", 1024, 384});
W
wangyang59 已提交
407 408 409
  LayerInputConfig* input = config.layerConfig.add_inputs();
  ConvConfig* conv = input->mutable_conv_conf();
  conv->set_filter_size(2);
W
wangyang59 已提交
410
  conv->set_filter_size_y(4);
W
wangyang59 已提交
411 412 413 414 415 416 417 418
  conv->set_channels(16);
  conv->set_padding(0);
  conv->set_padding_y(1);
  conv->set_stride(2);
  conv->set_stride_y(2);
  conv->set_groups(1);
  conv->set_filter_channels(3 / conv->groups());
  conv->set_img_size(16);
419 420 421 422
  conv->set_output_x(outputSize(conv->img_size(),
                                conv->filter_size(),
                                conv->padding(),
                                conv->stride(),
423
                                /* caffeMode */ true));
W
wangyang59 已提交
424 425 426 427 428

  config.layerConfig.set_size(conv->img_size() * conv->img_size() *
                              config.layerConfig.num_filters());

  testLayerGrad(config, "convTrans", 100, trans, useGpu);
429 430
  // Use small batch_size and useWeight=true to test biasGrad
  testLayerGrad(config, "convTrans", 2, trans, useGpu, true, 0.02);
W
wangyang59 已提交
431 432 433
}

TEST(Layer, convTransLayer) {
434 435 436
  for (auto useGpu : {false, true}) {
    testConvTransLayer("exconvt", /* trans= */ false, /* useGpu= */ useGpu);
  }
W
wangyang59 已提交
437 438 439
#ifndef PADDLE_ONLY_CPU
  testConvTransLayer("cudnn_convt", /* trans= */ false, /* useGpu= */ true);
#endif
W
wangyang59 已提交
440 441
}

Z
zhangjinchao01 已提交
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
TEST(Layer, blockExpandLayer) {
  TestConfig config;
  config.biasSize = 0;
  config.layerConfig.set_type("blockexpand");

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 6144, 0});
  LayerInputConfig* input = config.layerConfig.add_inputs();
  BlockExpandConfig* blockExpand = input->mutable_block_expand_conf();
  blockExpand->set_img_size_x(64);
  blockExpand->set_img_size_y(32);
  blockExpand->set_channels(3);
  blockExpand->set_padding_x(0);
  blockExpand->set_padding_y(0);
  blockExpand->set_block_x(4);
  blockExpand->set_block_y(32);
  blockExpand->set_stride_x(2);
  blockExpand->set_stride_y(2);
459 460 461 462 463 464 465 466 467 468
  blockExpand->set_output_x(outputSize(blockExpand->img_size_x(),
                                       blockExpand->block_x(),
                                       blockExpand->padding_x(),
                                       blockExpand->stride_x(),
                                       /* caffeMode */ false));
  blockExpand->set_output_y(outputSize(blockExpand->img_size_y(),
                                       blockExpand->block_y(),
                                       blockExpand->padding_y(),
                                       blockExpand->stride_y(),
                                       /* caffeMode */ false));
Z
zhangjinchao01 已提交
469 470 471 472 473 474 475 476
  config.layerConfig.set_size(blockExpand->block_x() * blockExpand->block_y() *
                              blockExpand->channels());

  for (auto useGpu : {false, true}) {
    testLayerGrad(config, "blockexpand", 100, false, useGpu);
  }
}

477 478 479 480 481 482 483 484
TEST(Layer, maxoutLayer) {
  TestConfig config;
  config.biasSize = 0;
  config.layerConfig.set_type("maxout");

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 4096, 0});
  LayerInputConfig* input = config.layerConfig.add_inputs();
  MaxOutConfig* maxout = input->mutable_maxout_conf();
L
Luo Tao 已提交
485
  ImageConfig* image = maxout->mutable_image_conf();
486

L
Luo Tao 已提交
487 488 489
  image->set_img_size(32);
  image->set_img_size_y(32);
  image->set_channels(4);
490 491 492 493 494 495
  maxout->set_groups(2);

  for (auto useGpu : {false, true}) {
    testLayerGrad(config, "maxout", 10, false, useGpu);
  }
}
Z
zhangjinchao01 已提交
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
void testFcLayer(string format, size_t nnz) {
  TestConfig config;
  config.biasSize = 4096;
  config.layerConfig.set_type("fc");
  config.layerConfig.set_size(4096);
  config.layerConfig.set_active_type("sigmoid");
  config.layerConfig.set_drop_rate(0.1);

  config.inputDefs.push_back(
      {INPUT_DATA, "layer_0", 8192, nnz, ParaSparse(format)});
  config.layerConfig.add_inputs();

  LOG(INFO) << config.inputDefs[0].sparse.sparse << " "
            << config.inputDefs[0].sparse.format;

  for (auto useGpu : {false, true}) {
512 513 514 515 516
    testLayerGrad(config,
                  "fc",
                  100,
                  /* trans */ false,
                  useGpu,
Z
zhangjinchao01 已提交
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
                  /* weight */ true);
  }
}

TEST(Layer, fcLayer) {
  testFcLayer("", 4096 * 4096 * 2);
  testFcLayer("csc", 4096 * 40);
  testFcLayer("csr", 4096 * 40);
}

TEST(Layer, SelectiveFullyConnectedLayer) {
  TestConfig config;
  size_t nin = 16;
  size_t nout = 256;
  config.layerConfig.set_type("selective_fc");
  config.layerConfig.set_size(nout);
  config.layerConfig.set_active_type("sigmoid");
  config.layerConfig.set_has_selected_colums(true);
  config.layerConfig.set_selective_fc_pass_generation(false);
  config.biasSize = nout;

  config.inputDefs.push_back({INPUT_DATA, "input0", nin, nin * nout});
  config.layerConfig.add_inputs();
  config.inputDefs.push_back(
      {INPUT_SPARSE_NON_VALUE_DATA, "index", nout, 0, ParaSparse("csr", true)});
  config.layerConfig.add_inputs();

544 545 546 547 548 549
  testLayerGrad(config,
                "selective_fc",
                100,
                /* trans= */ false,
                /* useGup= */ false,
                false);
Z
zhangjinchao01 已提交
550
#ifndef PADDLE_ONLY_CPU
551 552 553 554 555 556
  testLayerGrad(config,
                "selective_fc",
                100,
                /* trans= */ false,
                /* useGup= */ true,
                false);
Z
zhangjinchao01 已提交
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
#endif
}

TEST(Layer, DataNormLayer) {
  TestConfig config;
  config.layerConfig.set_type("data_norm");
  config.layerConfig.set_size(20);
  config.biasSize = 0;

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 20, 100});
  config.inputDefs.back().isStatic = true;
  config.layerConfig.add_inputs();

  for (auto strategy : {"z-score", "min-max", "decimal-scaling"}) {
    config.layerConfig.set_data_norm_strategy(strategy);
    // The parameters are static, so not support GPU now
573 574 575 576
    testLayerGrad(config,
                  "data_norm",
                  200,
                  /* trans */ false,
Z
zhangjinchao01 已提交
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
                  /* useGpu */ false);
  }
}

TEST(Layer, hsigmoidLayer) {
  TestConfig config;
  config.layerConfig.set_type("hsigmoid");
  config.layerConfig.set_num_classes(5);
  config.layerConfig.set_size(1);
  config.biasSize = config.layerConfig.num_classes() - 1;

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 50, 200});
  config.inputDefs.push_back({INPUT_LABEL, "layer_1", 5, 0});
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();

  // Not support GPU now
594 595 596 597 598
  testLayerGrad(config,
                "hsigmoid",
                100,
                /* trans */ false, /* useGpu */
                false);
Z
zhangjinchao01 已提交
599 600 601 602 603 604 605 606 607 608 609 610 611
}

TEST(Layer, multi_cross) {
  TestConfig config;
  config.layerConfig.set_type("multi-class-cross-entropy");
  config.biasSize = 0;

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 50, 0});
  config.inputDefs.push_back({INPUT_LABEL, "layer_1", 10, 0});
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
612 613
    testLayerGrad(
        config, "multi-class-cross-entropy", 100, /* trans */ false, useGpu);
Z
zhangjinchao01 已提交
614 615 616
  }
}

H
Haonan 已提交
617
TEST(Layer, multi_binary_label_sparse_mat) {
Z
zhangjinchao01 已提交
618 619 620 621 622 623 624 625 626
  TestConfig config;
  config.layerConfig.set_type("multi_binary_label_cross_entropy");
  config.biasSize = 0;

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 50, 0});
  config.inputDefs.push_back({INPUT_SPARSE_NON_VALUE_DATA, "layer_1", 50, 0});
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();

627
  for (auto useGpu : {false, true}) {
628 629 630 631 632
    testLayerGrad(config,
                  "multi_binary_label_cross_entropy",
                  100,
                  /* trans */ false,
                  useGpu);
633
  }
Z
zhangjinchao01 已提交
634 635
}

H
Haonan 已提交
636 637 638 639 640 641 642 643 644 645 646
TEST(layer, multi_binary_label_id) {
  TestConfig config;
  config.layerConfig.set_type("multi_binary_label_cross_entropy");
  config.biasSize = 0;

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 50, 0});
  config.inputDefs.push_back({INPUT_LABEL, "layer_1", 10, 0});
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
647 648 649 650 651
    testLayerGrad(config,
                  "multi_binary_label_cross_entropy",
                  100,
                  /* trans */ false,
                  useGpu);
H
Haonan 已提交
652 653 654
  }
}

Z
zhangjinchao01 已提交
655 656 657 658 659 660 661 662 663 664 665 666
TEST(Layer, multi_cross_with_selfnorm) {
  TestConfig config;
  config.layerConfig.set_type("multi_class_cross_entropy_with_selfnorm");
  config.layerConfig.set_softmax_selfnorm_alpha(0.1);
  config.biasSize = 0;

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 50, 0});
  config.inputDefs.push_back({INPUT_LABEL, "layer_1", 10, 0});
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();

  // Not support GPU now
667 668 669
  testLayerGrad(config,
                "multi_class_cross_entropy_with_selfnorm",
                100,
Z
zhangjinchao01 已提交
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
                /* trans */ false,
                /* useGpu */ false);
}

TEST(Layer, multi_cross_soft) {
  TestConfig config;
  config.layerConfig.set_type("soft_binary_class_cross_entropy");
  config.biasSize = 0;

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 10, 0});
  config.inputDefs.push_back({INPUT_DATA_TARGET, "layer_1", 10, 0});
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
685 686 687 688 689
    testLayerGrad(config,
                  "soft_binary_class_cross_entropy",
                  100,
                  /* trans */ false,
                  useGpu);
Z
zhangjinchao01 已提交
690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
  }
}

TEST(Layer, square_error) {
  TestConfig config;
  config.layerConfig.set_type("square_error");
  config.biasSize = 0;

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 10, 0});
  config.inputDefs.push_back({INPUT_DATA_TARGET, "layer_1", 10, 0});
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
    testLayerGrad(config, "square_error", 100, /* trans */ false, useGpu);
  }
}

TEST(Layer, sparse_square_error) {
  TestConfig config;
  config.layerConfig.set_type("square_error");
  config.biasSize = 0;

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 50, 0});
  config.inputDefs.push_back({INPUT_SPARSE_NON_VALUE_DATA, "layer_1", 50, 0});
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();

  // "GpuSparseMatrix" as label is not supported
719 720 721 722
  testLayerGrad(config,
                "square_error",
                100,
                /* trans */ false,
Z
zhangjinchao01 已提交
723 724 725 726 727 728 729 730 731 732 733 734 735 736
                /* useGpu */ false);
}

TEST(Layer, sparse_float_square_error) {
  TestConfig config;
  config.layerConfig.set_type("square_error");
  config.biasSize = 0;

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 50, 0});
  config.inputDefs.push_back({INPUT_SPARSE_FLOAT_VALUE_DATA, "layer_1", 50, 0});
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();

  // "GpuSparseMatrix" as label is not supported
737 738 739 740
  testLayerGrad(config,
                "square_error",
                100,
                /* trans */ false,
Z
zhangjinchao01 已提交
741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
                /* useGpu */ false);
}

TEST(Layer, square_error_weighted) {
  TestConfig config;
  config.layerConfig.set_type("square_error");
  config.biasSize = 0;
  config.testAccumulate = false;

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 10, 0});
  config.inputDefs.push_back({INPUT_DATA_TARGET, "layer_1", 10, 0});
  config.inputDefs.push_back({INPUT_DATA_TARGET, "layer_2", 1, 0});
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
    testLayerGrad(config, "square_error", 100, /* trans */ false, useGpu);
  }
}

TEST(Layer, huber_two_class) {
  TestConfig config;
  config.layerConfig.set_type("huber");
  config.biasSize = 0;

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 1, 0});
  config.inputDefs.push_back({INPUT_LABEL, "layer_1", 2, 0});
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
    testLayerGrad(config, "huber", 100, /* trans */ false, useGpu);
  }
}

void testExpandLayer(string trans_type, bool hasSubseq) {
  TestConfig config;
  config.layerConfig.set_type("expand");

  config.inputDefs.push_back(
      {trans_type == "non-seq" ? INPUT_DENSE_DIM_DATA : INPUT_SEQUENCE_DATA,
783 784 785
       "layer_0",
       10,
       0});
Z
zhangjinchao01 已提交
786
  config.inputDefs.push_back(
787 788 789 790
      {hasSubseq ? INPUT_HASSUB_SEQUENCE_DATA : INPUT_SEQUENCE_DATA,
       "layer_1",
       10,
       0});
Z
zhangjinchao01 已提交
791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();
  config.layerConfig.set_trans_type(trans_type);
  LOG(INFO) << " trans_type=" << trans_type << " hasSubseq=" << hasSubseq;

  for (auto useGpu : {false, true}) {
    testLayerGrad(config, "expand", 30, false, useGpu);
  }
}

TEST(Layer, ExpandLayer) {
  testExpandLayer("non-seq", false);  // non-seq expand to seq
  testExpandLayer("non-seq", true);   // non-seq expand to hasSubseq
  testExpandLayer("seq", true);       // seq expand to hasSubseq
}

807 808 809
void testDegradeLayer(bool hasSubseq,
                      string layer_type,
                      string trans_type,
L
Luo Tao 已提交
810
                      int stride) {
Z
zhangjinchao01 已提交
811 812 813
  TestConfig config;
  config.layerConfig.set_type(layer_type);
  config.layerConfig.set_size(10);
814
  config.layerConfig.set_seq_pool_stride(stride);
Z
zhangjinchao01 已提交
815 816 817
  config.biasSize = 0;

  config.inputDefs.push_back(
818 819 820 821
      {hasSubseq ? INPUT_HASSUB_SEQUENCE_DATA : INPUT_SEQUENCE_DATA,
       "layer_0",
       10,
       0});
Z
zhangjinchao01 已提交
822 823 824 825 826 827 828 829 830 831 832 833
  config.layerConfig.add_inputs();
  config.layerConfig.set_trans_type(trans_type);

  auto testDegradeLayerGrad = [](TestConfig& config, string layer_type) {
    for (auto useGpu : {false, true}) {
      testLayerGrad(config, layer_type, 100, false, useGpu);
    }
  };

  if (layer_type == "average") {
    for (auto strategy : {"average", "sum", "squarerootn"}) {
      LOG(INFO) << " hasSubseq=" << hasSubseq << " trans_type=" << trans_type
834 835
                << " average_strategy=" << strategy
                << " seq_pool_stride=" << stride;
Z
zhangjinchao01 已提交
836 837 838 839
      config.layerConfig.set_average_strategy(strategy);
      testDegradeLayerGrad(config, layer_type);
    }
  } else {
840 841
    LOG(INFO) << " hasSubseq=" << hasSubseq << " trans_type=" << trans_type
              << " seq_pool_stride=" << stride;
Z
zhangjinchao01 已提交
842 843 844 845 846
    testDegradeLayerGrad(config, layer_type);
  }
}

TEST(Layer, MaxLayer) {
L
Luo Tao 已提交
847 848 849
  testDegradeLayer(false, "max", "non-seq", -1);  // seq max to non-seq
  testDegradeLayer(true, "max", "non-seq", -1);   // hasSubseq max to non-seq
  testDegradeLayer(true, "max", "seq", -1);       // hasSubseq max to seq
Z
zhangjinchao01 已提交
850 851 852
}

TEST(Layer, SequenceLastInstanceLayer) {
853 854
  testDegradeLayer(false,
                   "seqlastins",
L
Luo Tao 已提交
855 856
                   "non-seq",
                   -1);  // seq seqlastins to non-seq
857 858 859 860
  testDegradeLayer(false,
                   "seqlastins",
                   "non-seq",
                   5);  // seq seqlastins to a shorten seq, stride window = 5
861 862
  testDegradeLayer(true,
                   "seqlastins",
L
Luo Tao 已提交
863 864 865 866
                   "non-seq",
                   -1);  // hasSubseq seqlastins to non-seq
  testDegradeLayer(
      true, "seqlastins", "seq", -1);  // hasSubseq seqlastins to seq
Z
zhangjinchao01 已提交
867 868 869
}

TEST(Layer, AverageLayer) {
L
Luo Tao 已提交
870 871 872 873
  testDegradeLayer(false, "average", "non-seq", -1);  // seq average to non-seq
  testDegradeLayer(
      true, "average", "non-seq", -1);           // hasSubseq average to non-seq
  testDegradeLayer(true, "average", "seq", -1);  // hasSubseq average to seq
Z
zhangjinchao01 已提交
874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
}

TEST(Layer, SequenceConcatLayer) {
  TestConfig config;
  config.layerConfig.set_type("seqconcat");
  config.layerConfig.set_size(10);
  config.biasSize = 0;

  config.inputDefs.push_back({INPUT_SEQUENCE_DATA, "layer_0", 10, 0});
  config.layerConfig.add_inputs();
  config.inputDefs.push_back({INPUT_SEQUENCE_DATA, "layer_1", 10, 0});
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
    testLayerGrad(config, "seqconcat", 100, false, useGpu);
  }
}

TEST(Layer, SequenceReshapeLayer) {
  TestConfig config;
  config.layerConfig.set_type("seqreshape");
  config.layerConfig.set_size(10);

  config.inputDefs.push_back({INPUT_SEQUENCE_DATA, "layer_0", 100, 0});
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
    testLayerGrad(config, "seqreshape", 100, false, useGpu);
  }
}

TEST(Layer, ConvShiftLayer) {
  TestConfig config;
  config.layerConfig.set_type("conv_shift");
  config.layerConfig.set_size(10);

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 10, 0});
  config.inputDefs.push_back({INPUT_DATA, "layer_1", 3, 0});
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();

  // Not support GPU now
  testLayerGrad(config, "conv_shift", 100, false, false);
}

TEST(Layer, PowerLayer) {
  TestConfig config;
  config.layerConfig.set_type("power");
  config.layerConfig.set_size(10);

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 1, 0});
  config.inputDefs.push_back({INPUT_DATA, "layer_1", 10, 0});
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
    testLayerGrad(config, "power", 100, false, useGpu);
  }
}

TEST(Layer, ConvexCombinationLayer) {
  TestConfig config;
  config.layerConfig.set_type("convex_comb");
  config.layerConfig.set_size(20);
  config.biasSize = 0;

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 5, 0});
  config.inputDefs.push_back({INPUT_DATA, "layer_1", 100, 0});
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
    testLayerGrad(config, "convex_comb", 100, false, useGpu);
  }
}

TEST(Layer, InterpolationLayer) {
  TestConfig config;
  config.layerConfig.set_type("interpolation");
  config.layerConfig.set_size(10);
  config.biasSize = 0;

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 1, 0});
  config.inputDefs.push_back({INPUT_DATA, "layer_1", 10, 0});
  config.inputDefs.push_back({INPUT_DATA, "layer_2", 10, 0});
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
    testLayerGrad(config, "interpolation", 100, false, useGpu);
  }
}

TEST(Layer, OuterProdLayer) {
  TestConfig config;
  config.layerConfig.set_type("out_prod");
  config.layerConfig.set_size(100);

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 10, 0});
  config.layerConfig.add_inputs();
  config.inputDefs.push_back({INPUT_DATA, "layer_1", 10, 0});
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
    testLayerGrad(config, "out_prod", 100, false, useGpu);
  }
}

TEST(Layer, SlopeInterceptLayer) {
  TestConfig config;
  config.layerConfig.set_type("slope_intercept");
  config.layerConfig.set_size(10);
  config.layerConfig.set_slope(1.0);
  config.layerConfig.set_intercept(0.1);

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 10, 0});
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
    testLayerGrad(config, "slope_intercept", 100, false, useGpu);
  }
}

TEST(Layer, ScalingLayer) {
  TestConfig config;
  config.layerConfig.set_type("scaling");
  config.layerConfig.set_size(10);
  config.biasSize = 0;

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 1, 0});
  config.layerConfig.add_inputs();
  config.inputDefs.push_back({INPUT_DATA, "layer_1", 10, 0});
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
    testLayerGrad(config, "scaling", 100, false, useGpu);
  }
}

void testNormLayer(const string& normType, bool trans, bool useGpu) {
  TestConfig config;
  config.layerConfig.set_type("norm");
  config.layerConfig.set_active_type("relu");

L
Luo Tao 已提交
1019
  config.inputDefs.push_back({INPUT_DATA, "layer_0", 1568, 0});
Z
zhangjinchao01 已提交
1020 1021 1022 1023 1024 1025 1026 1027 1028
  LayerInputConfig* input = config.layerConfig.add_inputs();
  NormConfig* norm = input->mutable_norm_conf();
  norm->set_norm_type(normType);
  norm->set_channels(16);
  norm->set_size(5);
  norm->set_scale(0.001);
  norm->set_pow(0.75);
  norm->set_blocked(0);
  norm->set_img_size(14);
L
Luo Tao 已提交
1029
  norm->set_img_size_y(7);
Z
zhangjinchao01 已提交
1030
  norm->set_output_x(norm->img_size());
L
Luo Tao 已提交
1031
  norm->set_output_y(norm->img_size_y());
Z
zhangjinchao01 已提交
1032 1033 1034 1035 1036 1037 1038
  if (norm->norm_type() == "cmrnorm" ||
      norm->norm_type() == "cmrnorm-projection") {
    norm->set_scale(norm->scale() / norm->size());
  } else {
    norm->set_scale(norm->scale() / (norm->size() * norm->size()));
  }

L
Luo Tao 已提交
1039
  config.layerConfig.set_size(norm->output_x() * norm->output_y() *
Z
zhangjinchao01 已提交
1040 1041 1042 1043 1044 1045 1046
                              norm->channels());
  config.biasSize = 0;

  testLayerGrad(config, "norm", 100, trans, useGpu);
}

TEST(Layer, NormLayer) {
1047 1048 1049 1050 1051 1052
  testNormLayer("cmrnorm-projection",
                /* trans= */ false, /* useGpu= */
                true);
  testNormLayer("cmrnorm-projection",
                /* trans= */ false, /* useGpu= */
                false);
Z
zhangjinchao01 已提交
1053 1054
}

1055 1056
void setPoolConfig(TestConfig* config,
                   PoolConfig* pool,
Z
zhangjinchao01 已提交
1057 1058 1059 1060 1061
                   const string& poolType) {
  (*config).biasSize = 0;
  (*config).layerConfig.set_type("pool");
  (*config).layerConfig.set_num_filters(16);

1062 1063 1064
  int kw = 3, kh = 3;
  int pw = 0, ph = 0;
  int sw = 2, sh = 2;
Z
zhangjinchao01 已提交
1065 1066
  pool->set_pool_type(poolType);
  pool->set_channels(16);
1067 1068 1069 1070 1071 1072 1073 1074
  pool->set_size_x(kw);
  pool->set_size_y(kh);
  pool->set_start(0);
  pool->set_padding(pw);
  pool->set_padding_y(ph);
  pool->set_stride(sw);
  pool->set_stride_y(sh);

1075 1076
  int ow = outputSize(pool->img_size(), kw, pw, sw, /* caffeMode */ false);
  int oh = outputSize(pool->img_size_y(), kh, ph, sh, /* caffeMode */ false);
1077 1078
  pool->set_output_x(ow);
  pool->set_output_y(oh);
Z
zhangjinchao01 已提交
1079 1080 1081 1082 1083 1084 1085 1086 1087
}

void testPoolLayer(const string& poolType, bool trans, bool useGpu) {
  TestConfig config;
  config.inputDefs.push_back({INPUT_DATA, "layer_0", 3136, 0});
  LayerInputConfig* input = config.layerConfig.add_inputs();
  PoolConfig* pool = input->mutable_pool_conf();

  pool->set_img_size(14);
1088 1089 1090
  pool->set_img_size_y(14);
  setPoolConfig(&config, pool, poolType);
  config.layerConfig.set_size(pool->output_x() * pool->output_y() *
Z
zhangjinchao01 已提交
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
                              pool->channels());

  testLayerGrad(config, "pool", 100, trans, useGpu);
}

#ifndef PADDLE_ONLY_CPU
void testPoolLayer2(const string& poolType, bool trans, bool useGpu) {
  TestConfig config;
  config.inputDefs.push_back({INPUT_DATA, "layer_0", 3200, 0});
  LayerInputConfig* input = config.layerConfig.add_inputs();
  PoolConfig* pool = input->mutable_pool_conf();

  pool->set_size_y(4);
  pool->set_stride_y(3);
  pool->set_img_size(10);
  pool->set_img_size_y(20);
1107
  setPoolConfig(&config, pool, poolType);
Z
zhangjinchao01 已提交
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
  pool->set_output_y((pool->img_size_y() - pool->start() - pool->size_y()) /
                         ((float)pool->stride_y()) +
                     1.5);
  config.layerConfig.set_size(pool->output_x() * pool->output_y() *
                              pool->channels());

  testLayerGrad(config, "pool", 100, trans, useGpu);
}
#endif

TEST(Layer, PoolLayer) {
  testPoolLayer("avg-projection", /* trans= */ false, /* useGpu= */ false);
  testPoolLayer("max-projection", /* trans= */ false, /* useGpu= */ false);

#ifndef PADDLE_ONLY_CPU
  testPoolLayer("avg-projection", /* trans= */ false, /* useGpu= */ true);
  testPoolLayer("max-projection", /* trans= */ false, /* useGpu= */ true);
  testPoolLayer("cudnn-max-pool", /* trans= */ false, /* useGpu= */ true);
  testPoolLayer("cudnn-avg-pool", /* trans= */ false, /* useGpu= */ true);
  testPoolLayer2("cudnn-max-pool", /* trans= */ false, /* useGpu= */ true);
  testPoolLayer2("cudnn-avg-pool", /* trans= */ false, /* useGpu= */ true);
#endif
}

1132 1133 1134
void testSppLayer(const string& poolType,
                  const int pyramidHeight,
                  bool trans,
Q
qijun 已提交
1135 1136 1137 1138 1139 1140 1141 1142
                  bool useGpu) {
  TestConfig config;
  config.layerConfig.set_type("spp");
  config.inputDefs.push_back({INPUT_DATA, "layer_0", 3200, 0});
  LayerInputConfig* input = config.layerConfig.add_inputs();
  SppConfig* sppConfig = input->mutable_spp_conf();
  sppConfig->set_pool_type(poolType);
  sppConfig->set_pyramid_height(pyramidHeight);
L
Luo Tao 已提交
1143 1144 1145 1146
  ImageConfig* imageConfig = sppConfig->mutable_image_conf();
  imageConfig->set_channels(16);
  imageConfig->set_img_size(10);
  imageConfig->set_img_size_y(20);
Q
qijun 已提交
1147
  int outputSize = (std::pow(4, sppConfig->pyramid_height()) - 1) / (4 - 1);
L
Luo Tao 已提交
1148
  config.layerConfig.set_size(outputSize * imageConfig->channels());
Q
qijun 已提交
1149 1150 1151 1152 1153
  testLayerGrad(config, "spp", 100, trans, useGpu);
}

TEST(Layer, SpatialPyramidPoolLayer) {
  for (auto useGpu : {false, true}) {
1154 1155 1156 1157
    for (auto pyramidHeight : {1, 2, 3}) {
      testSppLayer("avg-projection", pyramidHeight, false, useGpu);
      testSppLayer("max-projection", pyramidHeight, false, useGpu);
    }
Q
qijun 已提交
1158 1159 1160
  }
}

Z
zhangjinchao01 已提交
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
TEST(Layer, rankCostLayer) {
  TestConfig config;
  config.layerConfig.set_type("rank-cost");
  config.biasSize = 0;

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 1, 0});
  config.inputDefs.push_back({INPUT_DATA, "layer_1", 1, 0});
  config.inputDefs.push_back({INPUT_DATA_TARGET, "layer_2", 1, 0});
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
    testLayerGrad(config, "rank-cost", 100, false, useGpu);
  }
}

X
xuwei06 已提交
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
TEST(Layer, sumCostLayer) {
  TestConfig config;
  config.layerConfig.set_type("sum_cost");
  config.biasSize = 0;

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 1, 0});
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
    testLayerGrad(config, "sum_cost", 100, false, useGpu);
  }
}

Z
zhangjinchao01 已提交
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
TEST(Layer, weightedRankCostLayer) {
  TestConfig config;
  config.layerConfig.set_type("rank-cost");
  config.biasSize = 0;

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 1, 0});
  config.inputDefs.push_back({INPUT_DATA, "layer_1", 1, 0});
  config.inputDefs.push_back({INPUT_DATA_TARGET, "layer_2", 1, 0});
  config.inputDefs.push_back({INPUT_DATA_TARGET, "layer_3", 1, 0});
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
    testLayerGrad(config, "weighted-rank-cost", 100, false, useGpu);
  }
}

TEST(Layer, TensorLayer) {
  TestConfig config;
  config.layerConfig.set_type("tensor");
  config.layerConfig.set_size(10);
  config.layerConfig.set_active_type("sigmoid");
  config.biasSize = config.layerConfig.size();

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 5, 250});
  config.inputDefs.push_back({INPUT_DATA, "layer_1", 5, 0});
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
    testLayerGrad(config, "tensor", 100, false, useGpu);
  }
}

TEST(Layer, RecurrentLayer) {
  TestConfig config;
  config.layerConfig.set_type("recurrent");
  config.layerConfig.set_size(4);
  config.layerConfig.set_active_type("tanh");
  config.biasSize = 4;

  config.inputDefs.push_back(
      {INPUT_SEQUENCE_DATA, "layer_0", /* dim= */ 4, /* paraSize= */ 16});
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
    for (auto reversed : {false, true}) {
      config.layerConfig.set_reversed(reversed);
      config.testState = !reversed;
      testLayerGrad(config, "recurrent", 50, /* trans= */ false, useGpu);
    }
  }
}

TEST(Layer, LstmLayer) {
  TestConfig config;
  config.layerConfig.set_type("lstmemory");
  config.layerConfig.set_size(4);
1251
  config.layerConfig.set_active_type("tanh");
Z
zhangjinchao01 已提交
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
  config.layerConfig.set_active_state_type("sigmoid");
  config.layerConfig.set_active_gate_type("sigmoid");
  config.biasSize = 28;

  config.inputDefs.push_back(
      {INPUT_SEQUENCE_DATA, "layer_0", /* dim= */ 16, /* paraSize= */ 64});
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
    for (auto reversed : {false, true}) {
      config.layerConfig.set_reversed(reversed);
      config.testState = !reversed;
      testLayerGrad(config, "lstmemory", 100, /* trans= */ false, useGpu);
    }
  }
  for (auto useGpu : {true}) {
    config.testBatchState = true;
    config.layerConfig.set_reversed(false);
    testLayerGrad(config, "lstmemory", 10, /* trans= */ false, useGpu);
  }
}

TEST(Layer, MDLstmLayer) {
  TestConfig config;
  config.layerConfig.set_type("mdlstmemory");
  config.layerConfig.set_size(4);
  config.layerConfig.set_active_type("sigmoid");
  config.layerConfig.set_active_state_type("sigmoid");
  config.layerConfig.set_active_gate_type("sigmoid");
  config.biasSize = 4 * 9;

  config.inputDefs.push_back(
      {INPUT_SEQUENCE_MDIM_DATA, "layer_0", 4 * 5, 4 * 4 * 5});
  config.layerConfig.add_inputs();
  config.layerConfig.add_directions(true);
  config.layerConfig.add_directions(true);

  for (auto useGpu : {false, true}) {
    for (int i = 0; i < 2; i++) {
      for (int j = 0; j < 2; j++) {
        config.layerConfig.set_directions(0, bool(i));
        config.layerConfig.set_directions(1, bool(j));
        testLayerGrad(config, "mdlstmemory", 100, false, useGpu);
      }
    }
  }
}

TEST(Layer, ParameterReluLayer) {
  auto testParameterReluLayer = [&](size_t inputSize, size_t channels) {
    TestConfig config;
    config.layerConfig.set_type("prelu");
    config.inputDefs.push_back({INPUT_DATA, "layer_0", inputSize, channels});
    config.layerConfig.add_inputs();
    config.layerConfig.set_size(inputSize);
    config.layerConfig.set_partial_sum(inputSize /
                                       channels);  // size of feature map
    for (auto useGpu : {false, true}) {
      testLayerGrad(config, "prelu", 100, false, useGpu);
    }
  };

  testParameterReluLayer(192, 1);
  testParameterReluLayer(192, 3);
  testParameterReluLayer(192, 192);
}

TEST(Layer, ResizeLayer) {
  TestConfig config;
  config.biasSize = 0;
  config.layerConfig.set_type("resize");
  config.layerConfig.set_size(64);

  config.inputDefs.push_back({INPUT_DATA, "layer_0", 16, 0});
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
    testLayerGrad(config, "resize", 100, false, useGpu);
  }
}

1333 1334 1335 1336
TEST(Layer, RotateLayer) {
  TestConfig config;
  config.biasSize = 0;
  config.layerConfig.set_type("rotate");
H
Haonan 已提交
1337
  const int CHANNEL = 2;
H
Haonan 已提交
1338 1339
  const int HEIGHT = 8;
  const int WIDTH = 4;
H
Haonan 已提交
1340
  const int INPUT_SIZE = HEIGHT * WIDTH * CHANNEL;
1341
  config.layerConfig.set_size(INPUT_SIZE);
H
Haonan 已提交
1342 1343
  config.layerConfig.set_height(HEIGHT);
  config.layerConfig.set_width(WIDTH);
1344 1345 1346 1347 1348 1349 1350 1351
  config.inputDefs.push_back({INPUT_DATA, "layer_0", INPUT_SIZE, 0});
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
    testLayerGrad(config, "rotate", 100, false, useGpu);
  }
}

Z
zhangjinchao01 已提交
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
TEST(Layer, NCELayer) {
  TestConfig config;
  size_t numClasses = 4;
  config.layerConfig.set_type("nce");
  config.layerConfig.set_size(1);
  config.layerConfig.set_active_type("sigmoid");
  config.layerConfig.set_num_classes(numClasses);
  config.biasSize = numClasses;

  config.inputDefs.push_back(
      {INPUT_DATA, "layer_0", /* dim= */ 16, /* paraSize= */ 16 * numClasses});
  config.inputDefs.push_back(
      {INPUT_LABEL, "label", /* dim= */ numClasses, /* paraSize= */ 0});
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();

  for (auto withWeight : {false, true}) {
    if (withWeight) {
      config.inputDefs.push_back(
          {INPUT_DATA_TARGET, "weight", /* dim= */ 1, /* paraSize= */ 0});
      config.layerConfig.add_inputs();
    }

    for (auto isIdLabel : {false, true}) {
      config.inputDefs[1] = {
1377 1378
          isIdLabel ? INPUT_LABEL : INPUT_SPARSE_NON_VALUE_DATA,
          "label",
Z
zhangjinchao01 已提交
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
          /* dim= */ numClasses,
          /* paraSize= */ 0};

      for (auto withDist : {false, true}) {
        config.layerConfig.clear_neg_sampling_dist();
        if (withDist) {
          double sum = 0;
          for (size_t i = 0; i < numClasses; ++i) {
            real p = rand();  // NOLINT use rand_r
            config.layerConfig.add_neg_sampling_dist(p);
            sum += p;
          }
          for (size_t i = 0; i < numClasses; ++i) {
            real p = config.layerConfig.neg_sampling_dist(i) / sum;
            config.layerConfig.set_neg_sampling_dist(i, p);
          }
        }
        LOG(INFO) << "NCELayer "
                  << " isIdLabel=" << isIdLabel << " withWeight=" << withWeight
                  << " withDist=" << withDist;
        // Not support GPU now
1400 1401 1402 1403
        testLayerGrad(config,
                      "nce",
                      100,
                      /* trans= */ false,
Z
zhangjinchao01 已提交
1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
                      /* useGpu */ false);
      }
    }
  }
}

TEST(Layer, GatedRecurrentLayer) {
  TestConfig config;
  config.layerConfig.set_type("gated_recurrent");
  config.layerConfig.set_size(4);
  config.layerConfig.set_active_type("sigmoid");
  config.layerConfig.set_active_gate_type("sigmoid");
  config.biasSize = 12;

  config.inputDefs.push_back(
      {INPUT_SEQUENCE_DATA, "layer_0", /* dim= */ 12, /* paraSize= */ 48});
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
    for (auto reversed : {false, true}) {
      config.layerConfig.set_reversed(reversed);
      config.testState = !reversed;
      testLayerGrad(config, "gated_recurrent", 100, /* trans= */ false, useGpu);
    }
  }
}

TEST(Layer, GruStepLayer) {
  TestConfig config;
  config.layerConfig.set_type("gru_step");
  config.layerConfig.set_size(4);
  config.layerConfig.set_active_type("sigmoid");
  config.layerConfig.set_active_gate_type("sigmoid");
  config.biasSize = 12;

  config.inputDefs.push_back(
      {INPUT_DATA, "layer_0", /* dim= */ 12, /* paraSize= */ 48});
  config.inputDefs.push_back(
      {INPUT_DATA, "layer_1", /* dim= */ 4, /* paraSize= */ 0});
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
    testLayerGrad(config, "gruStep", 100, /* trans= */ false, useGpu);
  }
}

TEST(Layer, LstmStepLayer) {
  TestConfig config;
  config.layerConfig.set_type("lstm_step");
  config.layerConfig.set_size(4);
  config.layerConfig.set_active_type("sigmoid");
  config.layerConfig.set_active_state_type("sigmoid");
  config.layerConfig.set_active_gate_type("sigmoid");
  config.biasSize = 12;
  config.testAccumulate = false;

  config.inputDefs.push_back(
      {INPUT_DATA, "layer_0", /* dim= */ 16, /* paraSize= */ 0});
  config.inputDefs.push_back(
      {INPUT_DATA, "layer_1", /* dim= */ 4, /* paraSize= */ 0});
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
    testLayerGrad(config, "lstmStep", 100, /* trans= */ false, useGpu);
  }
}

void testBatchNormLayer(const string& type, bool trans, bool useGpu) {
  TestConfig config;
  const int CHANNELS = 10;
  const int IMG_SIZE = 16;
L
Luo Tao 已提交
1477 1478
  const int IMG_SIZE_Y = 8;
  size_t size = CHANNELS * IMG_SIZE * IMG_SIZE_Y;
Z
zhangjinchao01 已提交
1479
  config.layerConfig.set_type(type);
L
Luo Tao 已提交
1480
  config.layerConfig.set_size(size);
Z
zhangjinchao01 已提交
1481 1482
  config.layerConfig.set_active_type("sigmoid");
  config.biasSize = CHANNELS;
1483 1484
  config.inputDefs.push_back({INPUT_DATA,
                              "layer_0",
L
Luo Tao 已提交
1485
                              /* dim= */ size,
Z
zhangjinchao01 已提交
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
                              /* paraSize= */ CHANNELS});

  config.inputDefs.push_back({INPUT_DATA, "layer_1_running_mean", 1, CHANNELS});
  config.inputDefs.back().isStatic = true;
  config.inputDefs.push_back({INPUT_DATA, "layer_2_running_var", 1, CHANNELS});
  config.inputDefs.back().isStatic = true;

  LayerInputConfig* input = config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();

  ImageConfig* img_conf = input->mutable_image_conf();
  img_conf->set_channels(CHANNELS);
  img_conf->set_img_size(IMG_SIZE);
L
Luo Tao 已提交
1500
  img_conf->set_img_size_y(IMG_SIZE_Y);
Z
zhangjinchao01 已提交
1501

1502 1503 1504 1505 1506
  testLayerGrad(config,
                "batch_norm",
                64,
                /* trans= */ trans,
                useGpu,
Z
zhangjinchao01 已提交
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
                /* useWeight */ true);
}

TEST(Layer, BatchNormalizationLayer) {
  testBatchNormLayer("batch_norm", false, false);
#ifndef PADDLE_ONLY_CPU
  testBatchNormLayer("batch_norm", false, true);
  if (hl_get_cudnn_lib_version() >= int(4000)) {
    testBatchNormLayer("cudnn_batch_norm", false, true);
  }
#endif
}

1520
void testConvOperator(bool isDeconv) {
Z
zhangjinchao01 已提交
1521 1522 1523 1524 1525 1526
  TestConfig config;
  const int NUM_FILTERS = 16;
  const int FILTER_SIZE = 2;
  const int FILTER_SIZE_Y = 3;
  const int CHANNELS = 3;
  const int IMAGE_SIZE = 16;
1527
  const int IMAGE_SIZE_Y = 9;
Z
zhangjinchao01 已提交
1528
  OperatorConfig& operatorConf = *config.layerConfig.add_operator_confs();
1529 1530 1531 1532 1533
  if (isDeconv) {
    operatorConf.set_type("convt");
  } else {
    operatorConf.set_type("conv");
  }
Z
zhangjinchao01 已提交
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
  ConvConfig* conv = operatorConf.mutable_conv_conf();
  operatorConf.set_num_filters(NUM_FILTERS);
  conv->set_filter_size(FILTER_SIZE);
  conv->set_filter_size_y(FILTER_SIZE_Y);
  conv->set_channels(CHANNELS);
  conv->set_padding(0);
  conv->set_padding_y(1);
  conv->set_stride(2);
  conv->set_stride_y(2);
  conv->set_groups(1);
  conv->set_img_size(IMAGE_SIZE);
L
Luo Tao 已提交
1545
  conv->set_img_size_y(IMAGE_SIZE_Y);
L
Luo Tao 已提交
1546 1547 1548 1549
  conv->set_output_x(outputSize(conv->img_size(),
                                conv->filter_size(),
                                conv->padding(),
                                conv->stride(),
L
Luo Tao 已提交
1550
                                /*  caffeMode */ true));
L
Luo Tao 已提交
1551 1552 1553 1554
  conv->set_output_y(outputSize(conv->img_size_y(),
                                conv->filter_size_y(),
                                conv->padding_y(),
                                conv->stride_y(),
L
Luo Tao 已提交
1555
                                /*  caffeMode */ true));
Z
zhangjinchao01 已提交
1556

1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
  if (isDeconv) {
    conv->set_filter_channels(NUM_FILTERS / conv->groups());
    config.inputDefs.push_back({INPUT_DATA,
                                "layer_0",
                                conv->output_x() * conv->output_y() * CHANNELS,
                                0});
    config.layerConfig.set_size(IMAGE_SIZE * IMAGE_SIZE_Y * NUM_FILTERS);
  } else {
    conv->set_filter_channels(conv->channels() / conv->groups());
    config.inputDefs.push_back(
        {INPUT_DATA, "layer_0", IMAGE_SIZE * IMAGE_SIZE_Y * CHANNELS, 0});
    config.layerConfig.set_size(conv->output_x() * conv->output_y() *
                                NUM_FILTERS);
  }

Z
zhangjinchao01 已提交
1572
  config.inputDefs.push_back(
1573 1574 1575 1576
      {INPUT_DATA,
       "layer_1",
       FILTER_SIZE * FILTER_SIZE_Y * CHANNELS * NUM_FILTERS,
       0});
Z
zhangjinchao01 已提交
1577 1578 1579 1580 1581 1582
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();

  testOperatorGrad(config, operatorConf, 100, /*useGpu*/ true, false);
}

1583 1584 1585 1586 1587
TEST(Operator, conv) {
  testConvOperator(/*isDeconv*/ true);
  testConvOperator(/*isDeconv*/ false);
}

Z
zhangjinchao01 已提交
1588 1589 1590 1591 1592 1593 1594
TEST(Layer, FeatureMapExpandLayer) {
  TestConfig config;
  config.layerConfig.set_type("featmap_expand");
  const int CHANNELS = 10;
  const int INPUT_SIZE = 100;
  config.layerConfig.set_size(INPUT_SIZE * CHANNELS);
  config.layerConfig.set_num_filters(CHANNELS);
1595 1596 1597 1598
  config.inputDefs.push_back({INPUT_SEQUENCE_DATA,
                              "layer_0",
                              /* dim= */ INPUT_SIZE,
                              /* paraSize= */ 0});
Z
zhangjinchao01 已提交
1599 1600
  config.layerConfig.add_inputs();
  for (auto useGpu : {false, true}) {
X
xuwei06 已提交
1601 1602 1603 1604 1605 1606 1607 1608 1609
    for (auto asRowVec : {false, true}) {
      config.layerConfig.set_user_arg(asRowVec ? "as_row_vec" : "as_col_vec");
      testLayerGrad(config,
                    "featmap_expand",
                    /*batch_size*/ 100,
                    /* trans= */ false,
                    useGpu,
                    /* useWeight */ true);
    }
Z
zhangjinchao01 已提交
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
  }
}

TEST(Layer, MultiplexLayer) {
  TestConfig config;
  const int LAYER_SIZE = 100;
  config.layerConfig.set_type("multiplex");
  config.layerConfig.set_size(LAYER_SIZE);

  config.inputDefs.push_back({INPUT_LABEL, "layer_0", 2, 0});
  config.inputDefs.push_back(
      {INPUT_DATA, "layer_1", /* dim= */ LAYER_SIZE, /* paraSize= */ 0});
  config.inputDefs.push_back(
      {INPUT_DATA, "layer_2", /* dim= */ LAYER_SIZE, /* paraSize= */ 0});
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
    testLayerGrad(config, "multiplex", 512, /* trans= */ false, useGpu);
  }
}

D
dangqingqing 已提交
1633
TEST(Layer, PadLayer) {
Z
zhangjinchao01 已提交
1634 1635
  TestConfig config;
  config.biasSize = 0;
D
dangqingqing 已提交
1636
  config.layerConfig.set_type("pad");
Z
zhangjinchao01 已提交
1637

D
dangqingqing 已提交
1638 1639 1640 1641 1642
  int c = 4;
  int h = 31;
  int w = 36;
  size_t size = c * h * w;
  config.inputDefs.push_back({INPUT_DATA, "layer_0", size, 0});
Z
zhangjinchao01 已提交
1643
  LayerInputConfig* input = config.layerConfig.add_inputs();
D
dangqingqing 已提交
1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
  PadConfig* pad = input->mutable_pad_conf();
  ImageConfig* image = pad->mutable_image_conf();

  image->set_channels(c);
  image->set_img_size(h);
  image->set_img_size_y(w);
  pad->add_pad_c(1);
  pad->add_pad_c(2);
  pad->add_pad_h(2);
  pad->add_pad_h(3);
  pad->add_pad_w(3);
  pad->add_pad_w(5);
Z
zhangjinchao01 已提交
1656 1657

  for (auto useGpu : {false, true}) {
D
dangqingqing 已提交
1658
    testLayerGrad(config, "pad", 10, false, useGpu);
Z
zhangjinchao01 已提交
1659 1660 1661
  }
}

1662
TEST(Layer, CrossChannelNormLayer) {
G
gaoyuan 已提交
1663
  TestConfig config;
1664
  config.layerConfig.set_type("norm");
G
gaoyuan 已提交
1665
  config.layerConfig.set_size(100);
1666 1667 1668 1669 1670 1671 1672 1673
  LayerInputConfig* input = config.layerConfig.add_inputs();
  NormConfig* norm = input->mutable_norm_conf();
  norm->set_norm_type("cross-channel-norm");
  norm->set_channels(10);
  norm->set_size(100);
  norm->set_scale(0);
  norm->set_pow(0);
  norm->set_blocked(0);
G
gaoyuan 已提交
1674 1675 1676
  config.inputDefs.push_back({INPUT_DATA, "layer_0", 100, 10});

  for (auto useGpu : {false, true}) {
1677
    testLayerGrad(config, "cross-channel-norm", 10, false, useGpu, false, 5);
G
gaoyuan 已提交
1678 1679 1680
  }
}

G
gaoyuan 已提交
1681 1682 1683 1684
TEST(Layer, smooth_l1) {
  TestConfig config;
  config.layerConfig.set_type("smooth_l1");

1685 1686
  config.inputDefs.push_back({INPUT_DATA, "layer_0", 200, 0});
  config.inputDefs.push_back({INPUT_DATA_TARGET, "layer_1", 200, 0});
G
gaoyuan 已提交
1687 1688 1689 1690
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
D
dangqingqing 已提交
1691
    testLayerGrad(config, "smooth_l1", 100, false, useGpu, false);
G
gaoyuan 已提交
1692 1693 1694
  }
}

1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
TEST(Layer, multibox_loss) {
  TestConfig config;
  config.layerConfig.set_type("multibox_loss");
  config.biasSize = 0;
  LayerInputConfig* input = config.layerConfig.add_inputs();
  MultiBoxLossConfig* multiboxLoss = input->mutable_multibox_loss_conf();
  multiboxLoss->set_num_classes(21);
  multiboxLoss->set_input_num(1);
  multiboxLoss->set_overlap_threshold(0.5);
  multiboxLoss->set_neg_pos_ratio(3);
  multiboxLoss->set_neg_overlap(0.5);
  multiboxLoss->set_background_id(0);
  multiboxLoss->set_height(3);
  multiboxLoss->set_width(3);

  size_t gtNum = 1;
  MatrixPtr labelValue = Matrix::create(gtNum, 6, false, false);
  labelValue->randomizeUniform();
  labelValue->add(-0.5);
  labelValue->sigmoid(*labelValue);
  real* labelData = labelValue->getData();
  size_t labelWidth = labelValue->getWidth();
  for (size_t i = 0; i < gtNum; ++i) {
    *(labelData + i * labelWidth) = std::rand() % 20 + 1;
    *(labelData + i * labelWidth + 1) = 0.400259;
    *(labelData + i * labelWidth + 2) = 0.377857;
    *(labelData + i * labelWidth + 3) = 0.525712;
    *(labelData + i * labelWidth + 4) = 0.519368;
  }
  vector<int> seqStartPositions(gtNum + 1, 0);
  for (size_t i = 1; i <= gtNum; ++i) {
    seqStartPositions[i] = i;
  }

  // Ensure at lease one matched bbox
  MatrixPtr priorValue = Matrix::create(1, 72, false, false);
  priorValue->randomizeUniform();
  priorValue->add(-0.5);
  priorValue->sigmoid(*priorValue);
  real* priorData = priorValue->getData();
  *(priorData) = 0.424811;
  *(priorData + 1) = 0.397059;
  *(priorData + 2) = 0.538905;
  *(priorData + 3) = 0.447091;
  *(priorData + 4) = 0.425720;
  *(priorData + 5) = 0.515228;
  *(priorData + 6) = 0.519452;
  *(priorData + 7) = 0.591065;

  config.inputDefs.push_back(
      {INPUT_SELF_DEFINE_DATA, "priorbox", priorValue, {}});
  config.inputDefs.push_back(
      {INPUT_SELF_DEFINE_DATA, "label", labelValue, seqStartPositions});
  config.inputDefs.push_back({INPUT_DATA, "locPred", 36, 0});
  config.inputDefs.push_back({INPUT_DATA, "confPred", 189, 0});
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
    testLayerGrad(config, "multibox_loss", 1, false, useGpu, false);
  }
}

1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
TEST(Layer, TransLayer) {
  TestConfig config;
  const int height = 128;
  const int width = 1028;
  config.layerConfig.set_type("trans");
  config.layerConfig.set_size(width);

  config.inputDefs.push_back(
      {INPUT_DATA, "layer_0", /* dim= */ height * width, /* paraSize= */ 0});
  config.layerConfig.add_inputs();

  for (auto useGpu : {false, true}) {
    testLayerGrad(config, "trans", height, /* trans= */ false, useGpu);
  }
}

1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
TEST(Layer, RowConvLayer) {
  const int context = 3;
  const int size = 512;

  TestConfig config;
  config.layerConfig.set_type("row_conv");
  config.layerConfig.set_size(size);
  config.layerConfig.set_active_type("sigmoid");

  config.inputDefs.push_back(
      {INPUT_SEQUENCE_DATA, "layer_0", size, context * size});
  LayerInputConfig* input = config.layerConfig.add_inputs();
  RowConvConfig* conv = input->mutable_row_conv_conf();
  conv->set_context_length(context);

  for (auto useGpu : {false, true}) {
    testLayerGrad(config, "row_conv", 100, false, useGpu, false);
  }
}

1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
TEST(Layer, PixelSoftmaxLayer) {
  TestConfig config;
  // config input_0
  config.inputDefs.push_back({INPUT_DATA, "layer_0", 1024, 0});
  LayerInputConfig* input = config.layerConfig.add_inputs();
  ImageConfig* img = input->mutable_image_conf();
  img->set_channels(4);
  img->set_img_size(16);
  img->set_img_size_y(16);

  // config softmax layer
  config.layerConfig.set_type("pixel_softmax");
  config.layerConfig.set_name("pixelSofrmaxLayer");

  for (auto useGpu : {false, true}) {
    testLayerGrad(config, "pixel_softmax", 100, false, useGpu, true, 2);
  }
}

Z
zhangjinchao01 已提交
1814 1815 1816 1817 1818 1819 1820
int main(int argc, char** argv) {
  testing::InitGoogleTest(&argc, argv);
  initMain(argc, argv);
  FLAGS_thread_local_rand_use_global_seed = true;
  srand(1);
  return RUN_ALL_TESTS();
}