multi_devices_graph_pass.cc 34.8 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
C
chengduoZH 已提交
14
#include <algorithm>
Y
Yancey1989 已提交
15
#include <fstream>
C
chengduoZH 已提交
16
#include <string>
C
chengduoZH 已提交
17
#include <utility>
C
chengduoZH 已提交
18 19
#include <vector>

20
#include "paddle/fluid/framework/details/all_reduce_op_handle.h"
C
chengduoZH 已提交
21
#include "paddle/fluid/framework/details/broadcast_op_handle.h"
Y
Yu Yang 已提交
22
#include "paddle/fluid/framework/details/computation_op_handle.h"
23
#include "paddle/fluid/framework/details/data_balance_op_handle.h"
24
#include "paddle/fluid/framework/details/fused_broadcast_op_handle.h"
X
Xin Pan 已提交
25
#include "paddle/fluid/framework/details/multi_devices_graph_pass.h"
C
chengduoZH 已提交
26
#include "paddle/fluid/framework/details/reduce_op_handle.h"
Y
Yancey1989 已提交
27
#include "paddle/fluid/framework/details/rpc_op_handle.h"
Y
Yu Yang 已提交
28
#include "paddle/fluid/framework/details/scale_loss_grad_op_handle.h"
X
better  
Xin Pan 已提交
29
#include "paddle/fluid/framework/ir/graph_helper.h"
X
Xin Pan 已提交
30
#include "paddle/fluid/framework/ir/node.h"
Y
Fix bug  
yuyang18 已提交
31
#include "paddle/fluid/framework/op_info.h"
Y
Yu Yang 已提交
32
#include "paddle/fluid/framework/scope.h"
Y
Yu Yang 已提交
33

Y
Yu Yang 已提交
34 35 36
namespace paddle {
namespace framework {
namespace details {
X
Xin Pan 已提交
37

X
Xin Pan 已提交
38
namespace {
X
Xin Pan 已提交
39
// TODO(panyx0718): Clean this up as well.
X
Xin Pan 已提交
40 41 42 43 44
// all operators. NOTE that even we use a vector here, the operators is
// unordered.
typedef std::vector<OpHandleBase *> GraphOps;
const char kGraphOps[] = "ops";

X
Xin Pan 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
void PolishGraphToSupportDataHazards(ir::Graph *graph) {
  for (auto &var_map : graph->Get<GraphVars>(kGraphVars)) {
    for (auto &name_pair : var_map) {
      if (name_pair.second.size() <= 1) {
        continue;
      }
      auto it_new = name_pair.second.rbegin();
      auto it_old = name_pair.second.rbegin();
      ++it_old;
      for (; it_old != name_pair.second.rend(); it_new = it_old, ++it_old) {
        OpHandleBase *write_op = (*it_new)->GeneratedOp();
        const auto &read_ops = (*it_old)->PendingOps();

        for (auto *read_op : read_ops) {
          // Manually add a dependency var from read_op to write_op;
          if (read_op == write_op) {
            // Read Write is the same op.
            continue;
          }
          bool has_dep = false;
          for (auto *r_out : read_op->Outputs()) {
            for (auto *w_in : write_op->Inputs()) {
              if (r_out->Node() == w_in->Node()) {
                has_dep = true;
                break;
              }
            }
          }
          if (has_dep) continue;

          auto *dep_var = new DummyVarHandle(graph->CreateControlDepVar());
          read_op->AddOutput(dep_var);
          write_op->AddInput(dep_var);
          graph->Get<GraphDepVars>(kGraphDepVars).emplace(dep_var);
        }
      }
    }
  }
}

VarHandle *CreateOrGetLatestVarHandle(ir::Graph *graph, ir::Node *node,
                                      const platform::Place &place,
                                      size_t place_offset) {
  auto &var_holders = graph->Get<GraphVars>(kGraphVars)[place_offset];
  auto &var_holder = var_holders[node->Name()];
  VarHandle *var = nullptr;
  if (var_holder.empty()) {
    if (node->Var()) {
      var = new VarHandle(graph->CreateVarNode(node->Var()), 0, place_offset,
                          node->Name(), place);
    } else {
      var = new VarHandle(
          graph->CreateEmptyNode(node->Name(), ir::Node::Type::kVariable), 0,
          place_offset, node->Name(), place);
    }
    var_holder.emplace_back(var);
  } else {
X
clean1  
Xin Pan 已提交
102
    var = *var_holder.rbegin();
X
Xin Pan 已提交
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
  }
  return var;
}

void CreateOpOutput(ir::Graph *graph, OpHandleBase *op_handle,
                    ir::Node *new_node, const platform::Place &place,
                    size_t place_offset) {
  auto &vars =
      graph->Get<GraphVars>(kGraphVars)[place_offset][new_node->Name()];
  size_t version = vars.size();
  auto var =
      new VarHandle(new_node, version, place_offset, new_node->Name(), place);
  vars.emplace_back(var);
  op_handle->AddOutput(var);
}

void AddOutputToLeafOps(ir::Graph *graph) {
  for (auto &op : graph->Get<GraphOps>(kGraphOps)) {
    if (!op->Outputs().empty()) {
      continue;
    }
    auto *dummy_leaf = new DummyVarHandle(graph->CreateControlDepVar());
    graph->Get<GraphDepVars>(kGraphDepVars).emplace(dummy_leaf);
    op->AddOutput(dummy_leaf);
  }
}
}  // namespace
Y
Yu Yang 已提交
130

X
Xin Pan 已提交
131 132 133 134 135
static const char kLossVarName[] = "loss_var_name";
static const char kPlaces[] = "places";
static const char kParams[] = "params";
static const char kLocalScopes[] = "local_scopes";
static const char kStrategy[] = "strategy";
136
static const char kNumTrainers[] = "num_trainers";
X
Xin Pan 已提交
137

X
Xin Pan 已提交
138
void MultiDevSSAGraphBuilder::Init() const {
X
clean  
Xin Pan 已提交
139 140 141
  all_vars_.clear();
  balance_vars_.clear();

X
Xin Pan 已提交
142 143 144 145
  loss_var_name_ = Get<const std::string>(kLossVarName);
  places_ = Get<const std::vector<platform::Place>>(kPlaces);
  local_scopes_ = Get<const std::vector<Scope *>>(kLocalScopes);
  strategy_ = Get<const BuildStrategy>(kStrategy);
P
peizhilin 已提交
146
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
X
Xin Pan 已提交
147
  nccl_ctxs_ = &Get<platform::NCCLContextMap>("nccl_ctxs");
Y
Yu Yang 已提交
148
#endif
X
Xin Pan 已提交
149

X
Xin Pan 已提交
150
  for (auto &p : Get<const std::unordered_set<std::string>>(kParams)) {
Y
Yu Yang 已提交
151 152
    grad_names_.insert(GradVarName(p));
  }
Y
Yancey1989 已提交
153
  balance_vars_.resize(places_.size(), 0);
Y
yuyang18 已提交
154 155 156 157 158
  if (strategy_.enable_data_balance_ && places_.size() == 1) {
    LOG(WARNING) << "It is no need to enable data balance when there is only "
                    "one place. enable_data_balance is set to False.";
    strategy_.enable_data_balance_ = false;
  }
Y
Yu Yang 已提交
159 160
}

X
Xin Pan 已提交
161 162
void MultiDevSSAGraphBuilder::CreateOpHandleIOs(ir::Graph *result,
                                                ir::Node *node,
Y
Yu Yang 已提交
163 164
                                                size_t place_id) const {
  auto p = places_[place_id];
X
clean1  
Xin Pan 已提交
165
  auto *op_handle = result->Get<GraphOps>(kGraphOps).back();
X
Xin Pan 已提交
166 167
  op_handle->SetDeviceContext(p,
                              platform::DeviceContextPool::Instance().Get(p));
T
wip  
typhoonzero 已提交
168

169 170
  for (ir::Node *input : node->inputs) {
    VarHandle *var = CreateOrGetLatestVarHandle(result, input, p, place_id);
T
wip  
typhoonzero 已提交
171 172 173
    op_handle->AddInput(var);
  }

174
  for (ir::Node *output : node->outputs) {
X
polish  
Xin Pan 已提交
175 176 177 178 179 180 181 182
    ir::Node *new_node = nullptr;
    if (output->Var()) {
      new_node = result->CreateVarNode(output->Var());
    } else {
      new_node =
          result->CreateEmptyNode(output->Name(), ir::Node::Type::kVariable);
    }
    CreateOpOutput(result, op_handle, new_node, p, place_id);
T
wip  
typhoonzero 已提交
183 184
  }
}
Y
fix pe  
Yancey1989 已提交
185 186

std::vector<std::string> MultiDevSSAGraphBuilder::FindDistTrainSendVars(
X
Xin Pan 已提交
187
    const std::vector<ir::Node *> &nodes) const {
Y
fix pe  
Yancey1989 已提交
188
  std::vector<std::string> send_vars;
Y
Yancey1989 已提交
189 190
  // since parameters are all in block 0,
  // it's enough to only scan send ops in block 0
191 192
  for (auto &node : nodes) {
    OpDesc *op = node->Op();
Y
Yancey1989 已提交
193 194
    // TODO(Yancey1989): use a graceful method to find send op,
    // instead of the the hard code string
195
    if (op->Type() == "send") {
Y
fix pe  
Yancey1989 已提交
196 197 198 199 200 201 202 203 204 205
      auto op_vars = op->InputArgumentNames();
      send_vars.reserve(send_vars.size() +
                        std::distance(op_vars.begin(), op_vars.end()));
      send_vars.insert(send_vars.end(), op_vars.begin(), op_vars.end());
    }
  }
  return send_vars;
}

std::vector<std::string> MultiDevSSAGraphBuilder::FindDistTrainRecvVars(
X
Xin Pan 已提交
206
    const std::vector<ir::Node *> &nodes) const {
Y
fix pe  
Yancey1989 已提交
207
  std::vector<std::string> recv_vars;
208 209
  for (auto &node : nodes) {
    OpDesc *op = node->Op();
Y
Yancey1989 已提交
210 211 212
    // TODO(Yancey1989): use a graceful method to find recv op,
    // instead of the hard code string
    if (op->Type() == "recv") {
Y
fix pe  
Yancey1989 已提交
213 214 215 216 217 218 219 220 221
      auto op_vars = op->OutputArgumentNames();
      recv_vars.reserve(recv_vars.size() +
                        std::distance(op_vars.begin(), op_vars.end()));
      recv_vars.insert(recv_vars.end(), op_vars.begin(), op_vars.end());
    }
  }
  return recv_vars;
}

Y
Yancey1989 已提交
222 223 224 225
size_t MultiDevSSAGraphBuilder::GetAppropriateDeviceID(
    const std::vector<std::string> &var_names) const {
  int64_t numel_sum = 0;
  for (auto var_name : var_names) {
X
Xin Pan 已提交
226
    if (all_vars_.find(var_name) == all_vars_.end()) continue;
Y
Yancey1989 已提交
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
    auto var_desc = all_vars_.at(var_name);
    PADDLE_ENFORCE_NOT_NULL(var_desc);
    auto dim = framework::make_ddim(var_desc->GetShape());
    int64_t numel = framework::product(dim);
    PADDLE_ENFORCE_GT(numel, 0);
    numel_sum += numel;
  }

  auto smallest =
      std::min_element(std::begin(balance_vars_), std::end(balance_vars_));
  size_t dev_id =
      static_cast<size_t>(std::distance(std::begin(balance_vars_), smallest));
  balance_vars_[dev_id] += numel_sum;
  return dev_id;
}

X
better  
Xin Pan 已提交
243 244 245 246 247
// Topology sort the graph nodes from inputs to outputs.
// Since SSAGraphBuilder depends on forward/backward nodes to assign devices
// to parameter/gradients before optimizer ops, topo sort is insufficient. (
// some optimizer ops might not depend on any nodes), we manually move all
// optimizer nodes after last backward nodes.
X
Xin Pan 已提交
248 249 250
// However, the assumption by SSAGraphBuilder should be relaxed in the future.
std::vector<ir::Node *> SortOpsAndDelayOptimizeOp(const ir::Graph &graph) {
  std::vector<ir::Node *> ret = ir::TopologySortOperations(graph);
X
better  
Xin Pan 已提交
251 252 253 254 255
  size_t last_backward = 0;
  for (size_t i = 0; i < ret.size(); ++i) {
    if (boost::get<int>(
            ret[i]->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleAttrName())) ==
        static_cast<int>(OpRole::kBackward)) {
X
Xin Pan 已提交
256
      last_backward = i;
X
better  
Xin Pan 已提交
257 258 259
    }
  }

X
Xin Pan 已提交
260 261 262 263
  std::vector<ir::Node *> optimize_ops;
  std::vector<ir::Node *> sorted_ret;
  for (size_t i = 0; i < ret.size(); ++i) {
    if (i < last_backward) {
X
Xin Pan 已提交
264 265 266
      if (static_cast<bool>(boost::get<int>(ret[i]->Op()->GetAttr(
                                OpProtoAndCheckerMaker::OpRoleAttrName())) &
                            static_cast<int>(OpRole::kOptimize))) {
X
Xin Pan 已提交
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
        optimize_ops.push_back(ret[i]);
      } else {
        sorted_ret.push_back(ret[i]);
      }
    } else if (i == last_backward) {
      sorted_ret.push_back(ret[i]);
      // Verify that no operations before optimize ops depends on optimize ops.
      std::unordered_set<ir::Node *> optimize_set(optimize_ops.begin(),
                                                  optimize_ops.end());
      for (ir::Node *n : sorted_ret) {
        for (ir::Node *in : n->inputs) {
          for (ir::Node *pre_n : in->inputs) {
            PADDLE_ENFORCE(optimize_set.find(pre_n) == optimize_set.end(),
                           "optimize operations cannot be depended by forward "
                           "or backward node %s -> %s",
                           pre_n->Name(), n->Name());
          }
        }
X
Xin Pan 已提交
285
      }
X
Xin Pan 已提交
286 287 288 289
      sorted_ret.insert(sorted_ret.end(), optimize_ops.begin(),
                        optimize_ops.end());
    } else {
      sorted_ret.push_back(ret[i]);
X
Xin Pan 已提交
290 291
    }
  }
X
better  
Xin Pan 已提交
292 293 294
  return sorted_ret;
}

X
Xin Pan 已提交
295
std::unique_ptr<ir::Graph> MultiDevSSAGraphBuilder::ApplyImpl(
X
Xin Pan 已提交
296
    std::unique_ptr<ir::Graph> graph) const {
X
Xin Pan 已提交
297
  Init();
X
Xin Pan 已提交
298
  // Give the topology sort order and rebuild the graph structure.
X
better  
Xin Pan 已提交
299
  std::vector<ir::Node *> sorted_ops = SortOpsAndDelayOptimizeOp(*graph);
X
Xin Pan 已提交
300 301
  auto nodes = graph->ReleaseNodes();
  ir::Graph &result = *graph;
302

303 304
  int num_trainers = Get<int>(kNumTrainers);

305
  for (auto &node : nodes) {
X
Xin Pan 已提交
306
    if (node->IsVar() && node->Var()) {
X
Xin Pan 已提交
307
      all_vars_.emplace(node->Name(), node->Var());
308
    }
C
fix ci  
chengduoZH 已提交
309
  }
C
chengduoZH 已提交
310
  std::unordered_set<std::string> og_has_been_broadcast;
Y
Yu Yang 已提交
311 312

  // We cannot invoke resize. It is a bug of GCC 4.8
X
Xin Pan 已提交
313 314 315
  result.Set(kGraphVars, new GraphVars(places_.size()));
  result.Set(kGraphDepVars, new GraphDepVars);
  result.Set(kGraphOps, new GraphOps);
316

Y
fix pe  
Yancey1989 已提交
317
  // find send/recv vars so that we can place the distributed training
318
  // related op in the place 0
X
Xin Pan 已提交
319 320
  auto send_vars = FindDistTrainSendVars(sorted_ops);
  auto recv_vars = FindDistTrainRecvVars(sorted_ops);
T
typhoonzero 已提交
321

C
chengduoZH 已提交
322 323 324
  std::vector<std::unordered_set<std::string>> bcast_var_name_set;
  bcast_var_name_set.resize(places_.size());

C
chengduoZH 已提交
325
  size_t cur_device_id = 0;
Y
Yu Yang 已提交
326
  bool is_forwarding = true;
Y
Yancey1989 已提交
327
  bool is_dist_train = false;
328

X
Xin Pan 已提交
329 330
  std::unordered_map<std::string, int> sharded_var_device;

X
better  
Xin Pan 已提交
331
  for (ir::Node *node : sorted_ops) {
Y
Yancey1989 已提交
332
    if (boost::get<int>(
333
            node->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleAttrName())) ==
Y
Yancey1989 已提交
334
        static_cast<int>(OpRole::kRPC)) {
X
Xin Pan 已提交
335
      int op_dev_id = CreateRPCOp(&result, node, &sharded_var_device);
Y
Yancey1989 已提交
336 337 338 339 340 341 342 343 344 345 346 347
      PADDLE_ENFORCE(op_dev_id != -1,
                     "Can not schedule the RPC operator to the right place.");
      if (node->Op()->Type() == "recv") {
        auto recv_vars_attr =
            boost::get<std::vector<std::string>>(node->Op()->GetNullableAttr(
                OpProtoAndCheckerMaker::OpRoleVarAttrName()));
        PADDLE_ENFORCE(recv_vars_attr.size() == 2UL);  // [parameter, gradient]
        if (recv_vars_attr[0].find(".block") == std::string::npos) {
          bcast_var_name_set[op_dev_id].emplace(recv_vars_attr[0]);
        }
      }
      is_dist_train = true;
348 349 350
    } else if (boost::get<int>(node->Op()->GetAttr(
                   OpProtoAndCheckerMaker::OpRoleAttrName())) ==
               static_cast<int>(OpRole::kDist)) {
X
Xin Pan 已提交
351
      int op_dev_id = CreateDistTrainOp(&result, node, &sharded_var_device);
Y
Yancey1989 已提交
352 353 354 355
      if (node->Op()->Type() == "concat") {
        auto origin_param_name = node->Op()->OutputArgumentNames()[0];
        bcast_var_name_set[op_dev_id].emplace(origin_param_name);
      }
X
Xin Pan 已提交
356
    } else if (IsScaleLossOp(node)) {
Y
Yu Yang 已提交
357
      // user can customize loss@grad if not use_default_grad_scale_
Y
yuyang18 已提交
358 359
      if (strategy_.gradient_scale_ !=
          BuildStrategy::GradientScaleStrategy::kCustomized) {
X
Xin Pan 已提交
360
        // TODO(paddle-dev): Why is there no input for this op_handle?
361
        auto loss_grad_name = node->Op()->OutputArgumentNames()[0];
362
        CreateScaleLossGradOp(&result, loss_grad_name, node->outputs[0]);
Y
Yu Yang 已提交
363
      }
364 365 366 367
      // This assumes the backward generating code will ensure IsScaleLossOp
      // is true only for the op that scale the final scalar loss.
      // It also assumes backward op will always follow the forward op in
      // the block.
Y
Yu Yang 已提交
368
      is_forwarding = false;
Y
Yu Yang 已提交
369
    } else {
X
Xin Pan 已提交
370
      int op_dev_id = GetOpDeviceID(result, node, sharded_var_device);
C
chengduo 已提交
371
      if (op_dev_id != -1) {  // This op only runs on one specific device.
X
Xin Pan 已提交
372
        CreateComputationalOp(&result, node, op_dev_id);
373
        for (ir::Node *n : node->outputs) {
X
Xin Pan 已提交
374
          sharded_var_device.emplace(n->Name(), op_dev_id);
C
chengduoZH 已提交
375
        }
C
chengduo 已提交
376 377 378
      } else {
        // This op runs on all devices, and its output may have parameter's
        // gradients.
X
Xin Pan 已提交
379
        // TODO(paddle-dev): Why is so special about "read" op?
380 381
        if (node->Op()->Type() == "read" && strategy_.enable_data_balance_) {
          node->Op()->SetAttr("throw_eof_exp", false);
X
Xin Pan 已提交
382
          CreateComputationalOps(&result, node, places_.size());
383
          const auto &data_var_names = node->Op()->Output("Out");
384
          InsertDataBalanceOp(&result, data_var_names);
F
fengjiayi 已提交
385
        } else {
X
Xin Pan 已提交
386
          CreateComputationalOps(&result, node, places_.size());
387 388
        }

389
        if (!is_forwarding && (places_.size() > 1 || num_trainers > 1)) {
C
chengduo 已提交
390 391
          // Currently, we assume that once gradient is generated, it can be
          // broadcast, and each gradient is only broadcast once.
392
          if (static_cast<bool>(boost::get<int>(node->Op()->GetAttr(
C
chengduo 已提交
393 394 395
                                    OpProtoAndCheckerMaker::OpRoleAttrName())) &
                                static_cast<int>(OpRole::kBackward))) {
            try {
396 397
              auto backward_vars = boost::get<std::vector<std::string>>(
                  node->Op()->GetNullableAttr(
C
chengduo 已提交
398
                      OpProtoAndCheckerMaker::OpRoleVarAttrName()));
Y
yuyang18 已提交
399

C
chengduo 已提交
400
              PADDLE_ENFORCE_EQ(backward_vars.size() % 2, 0);
Y
yuyang18 已提交
401

C
chengduo 已提交
402 403 404
              for (size_t i = 0; i < backward_vars.size(); i += 2) {
                auto &p_name = backward_vars[i];
                auto &g_name = backward_vars[i + 1];
M
minqiyang 已提交
405
                VLOG(10) << "Bcast " << g_name << " for parameter " << p_name;
Y
yuyang18 已提交
406

C
chengduo 已提交
407 408 409 410
                switch (strategy_.reduce_) {
                  case BuildStrategy::ReduceStrategy::kReduce:
                    cur_device_id = GetAppropriateDeviceID({g_name});
                    CreateReduceOp(&result, g_name, cur_device_id);
X
Xin Pan 已提交
411
                    sharded_var_device.emplace(g_name, cur_device_id);
Y
Yancey1989 已提交
412 413 414
                    if (!is_dist_train) {
                      bcast_var_name_set[cur_device_id].emplace(p_name);
                    }
C
chengduo 已提交
415 416 417 418 419 420 421 422 423 424 425 426 427
                    break;
                  case BuildStrategy::ReduceStrategy::kAllReduce:
                    if (IsSparseGradient(g_name)) {
                      CreateReduceOp(&result, g_name, 0);
                      CreateBroadcastOp(&result, g_name, 0);
                    } else {
                      InsertAllReduceOp(&result, g_name);
                    }
                    break;
                  default:
                    LOG(FATAL) << "Unknown reduce strategy ";
                    break;
                }
Y
yuyang18 已提交
428
              }
C
chengduo 已提交
429
            } catch (boost::bad_get e) {
C
chengduoZH 已提交
430
            }
Y
Yu Yang 已提交
431 432 433 434 435
          }
        }
      }
    }
  }
436
  bool use_gpu = false;
P
peizhilin 已提交
437
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
438 439 440
  use_gpu = nccl_ctxs_ != nullptr;
#endif

Y
Yancey1989 已提交
441 442 443 444 445
  // Insert broadcast operators principle:
  // 1. Broadcast optimized parameters in Reduce strategy;
  // 2. No need broadcast optimized parameters in AllReduce strategy because of
  //    the optimization sub-graph would be run on every GPU;
  // 3. Allways broadcast received parameters in Distribute Training.
Y
Yancey1989 已提交
446 447 448
  if ((use_gpu &&
       strategy_.reduce_ == BuildStrategy::ReduceStrategy::kReduce) ||
      is_dist_train) {
449 450 451 452 453 454 455 456
    if (strategy_.fuse_broadcast_op_) {
      CreateFusedBroadcastOp(&result, bcast_var_name_set);
    } else {
      for (size_t dev_id = 0; dev_id < bcast_var_name_set.size(); ++dev_id) {
        auto &to_bcast_set = bcast_var_name_set[dev_id];
        for (auto &bcast_name : to_bcast_set) {
          CreateBroadcastOp(&result, bcast_name, dev_id);
        }
457
      }
C
chengduoZH 已提交
458 459
    }
  }
Y
Yu Yang 已提交
460
  /*
X
Xin Pan 已提交
461 462 463
  Dependency graph has been constructed. However, there are still data
  hazards need to be handled.
 */
Y
Yu Yang 已提交
464
  PolishGraphToSupportDataHazards(&result);
Y
Yu Yang 已提交
465

Y
Yu Yang 已提交
466 467 468 469
  /*
   * Only variables should be the leaves of graph.
   */
  AddOutputToLeafOps(&result);
X
Xin Pan 已提交
470
  result.Erase<GraphOps>(kGraphOps);
Q
qiaolongfei 已提交
471
  return graph;
Y
Yu Yang 已提交
472 473
}

Y
Yancey1989 已提交
474 475 476
bool MultiDevSSAGraphBuilder::IsSparseGradient(const std::string &og) const {
  PADDLE_ENFORCE(all_vars_.count(og) != 0);
  if (all_vars_.at(og)->GetType() == proto::VarType::SELECTED_ROWS) {
C
fix ci  
chengduoZH 已提交
477 478 479
    return true;
  }
  return false;
480 481
}

482 483
void MultiDevSSAGraphBuilder::SetCommunicationContext(
    OpHandleBase *op_handle, const platform::Place &p) const {
P
peizhilin 已提交
484
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
485 486 487 488 489 490 491 492 493 494
  if (nccl_ctxs_ == nullptr) {
    op_handle->SetDeviceContext(p,
                                platform::DeviceContextPool::Instance().Get(p));
  }
#else
  op_handle->SetDeviceContext(p,
                              platform::DeviceContextPool::Instance().Get(p));
#endif
}

X
Xin Pan 已提交
495
void MultiDevSSAGraphBuilder::CreateBroadcastOp(ir::Graph *result,
C
chengduoZH 已提交
496
                                                const std::string &p_name,
C
chengduoZH 已提交
497
                                                size_t src_dev_id) const {
P
peizhilin 已提交
498
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
X
polish  
Xin Pan 已提交
499 500 501
  auto *op_handle = new BroadcastOpHandle(
      result->CreateEmptyNode("broadcast", ir::Node::Type::kOperation),
      local_scopes_, places_, nccl_ctxs_);
C
chengduoZH 已提交
502
#else
X
polish  
Xin Pan 已提交
503 504 505
  auto *op_handle = new BroadcastOpHandle(
      result->CreateEmptyNode("broadcast", ir::Node::Type::kOperation),
      local_scopes_, places_);
C
chengduoZH 已提交
506
#endif
X
Xin Pan 已提交
507
  result->Get<GraphOps>(kGraphOps).emplace_back(op_handle);
X
Xin Pan 已提交
508

X
Xin Pan 已提交
509
  auto *in =
X
clean1  
Xin Pan 已提交
510
      result->Get<GraphVars>(kGraphVars).at(src_dev_id).at(p_name).back();
C
chengduoZH 已提交
511 512 513 514
  op_handle->AddInput(in);

  for (size_t i = 0; i < places_.size(); ++i) {
    auto &p = places_[i];
C
chengduoZH 已提交
515
    SetCommunicationContext(op_handle, p);
X
Xin Pan 已提交
516
    auto &vars = result->Get<GraphVars>(kGraphVars).at(i).at(p_name);
X
polish  
Xin Pan 已提交
517 518 519
    auto *out_var = new VarHandle(
        result->CreateEmptyNode(p_name, ir::Node::Type::kVariable), vars.size(),
        i, p_name, p);
C
chengduoZH 已提交
520 521 522 523 524
    vars.emplace_back(out_var);
    op_handle->AddOutput(out_var);
  }
}

525 526 527
void MultiDevSSAGraphBuilder::CreateFusedBroadcastOp(
    ir::Graph *result,
    const std::vector<std::unordered_set<std::string>> &bcast_varnames) const {
P
peizhilin 已提交
528
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
  auto *op_handle = new FusedBroadcastOpHandle(
      result->CreateEmptyNode("fused_broadcast", ir::Node::Type::kOperation),
      local_scopes_, places_, nccl_ctxs_);
#else
  auto *op_handle = new FusedBroadcastOpHandle(
      result->CreateEmptyNode("fused_broadcast", ir::Node::Type::kOperation),
      local_scopes_, places_);
#endif
  result->Get<GraphOps>(kGraphOps).emplace_back(op_handle);

  for (size_t i = 0; i < places_.size(); ++i) {
    auto &p = places_[i];
    SetCommunicationContext(op_handle, p);
  }

  for (size_t dev_id = 0; dev_id < bcast_varnames.size(); ++dev_id) {
    for (auto &p_name : bcast_varnames[dev_id]) {
      auto *in =
X
clean1  
Xin Pan 已提交
547
          result->Get<GraphVars>(kGraphVars).at(dev_id).at(p_name).back();
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
      op_handle->AddInput(in);
      for (size_t out_dev_id = 0; out_dev_id < places_.size(); ++out_dev_id) {
        auto &p = places_[out_dev_id];
        auto &vars =
            result->Get<GraphVars>(kGraphVars).at(out_dev_id).at(p_name);
        auto *out_var = new VarHandle(
            result->CreateEmptyNode(p_name, ir::Node::Type::kVariable),
            vars.size(), out_dev_id, p_name, p);
        vars.emplace_back(out_var);
        op_handle->AddOutput(out_var);
      }
    }
  }
}

X
Xin Pan 已提交
563
void MultiDevSSAGraphBuilder::CreateComputationalOp(ir::Graph *result,
564
                                                    ir::Node *node,
C
chengduoZH 已提交
565
                                                    int dev_id) const {
X
Xin Pan 已提交
566
  result->Get<GraphOps>(kGraphOps).emplace_back(
X
Xin Pan 已提交
567
      new ComputationOpHandle(result->CreateOpNode(node->Op()),
568 569
                              local_scopes_[dev_id], places_[dev_id]));
  CreateOpHandleIOs(result, node, dev_id);
C
chengduoZH 已提交
570 571
}

X
Xin Pan 已提交
572
void MultiDevSSAGraphBuilder::InsertAllReduceOp(ir::Graph *result,
C
chengduoZH 已提交
573
                                                const std::string &og) const {
P
peizhilin 已提交
574
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
X
Xin Pan 已提交
575
  result->Get<GraphOps>(kGraphOps).emplace_back(new AllReduceOpHandle(
X
polish  
Xin Pan 已提交
576 577
      result->CreateEmptyNode("allreduce", ir::Node::Type::kOperation),
      local_scopes_, places_, nccl_ctxs_));
C
chengduoZH 已提交
578
#else
X
Xin Pan 已提交
579
  result->Get<GraphOps>(kGraphOps).emplace_back(new AllReduceOpHandle(
X
polish  
Xin Pan 已提交
580 581
      result->CreateEmptyNode("allreduce", ir::Node::Type::kOperation),
      local_scopes_, places_));
C
chengduoZH 已提交
582
#endif
X
clean1  
Xin Pan 已提交
583
  auto *op_handle = result->Get<GraphOps>(kGraphOps).back();
Y
Yu Yang 已提交
584 585 586

  for (size_t i = 0; i < places_.size(); ++i) {
    auto &p = places_[i];
C
chengduoZH 已提交
587
    SetCommunicationContext(op_handle, p);
X
Xin Pan 已提交
588
    auto &vars = result->Get<GraphVars>(kGraphVars)[i][og];
Y
Yu Yang 已提交
589 590
    PADDLE_ENFORCE(!vars.empty());
    auto &prev_grad = vars.back();
X
clean1  
Xin Pan 已提交
591
    op_handle->AddInput(prev_grad);
Y
Yu Yang 已提交
592

X
Xin Pan 已提交
593
    auto var =
X
polish  
Xin Pan 已提交
594 595
        new VarHandle(result->CreateEmptyNode(og, ir::Node::Type::kVariable),
                      vars.size(), i, og, p);
Y
Yu Yang 已提交
596 597 598 599 600
    vars.emplace_back(var);
    op_handle->AddOutput(var);
  }
}

601
void MultiDevSSAGraphBuilder::InsertDataBalanceOp(
X
Xin Pan 已提交
602
    ir::Graph *result, const std::vector<std::string> &datas) const {
P
peizhilin 已提交
603
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
X
Xin Pan 已提交
604
  result->Get<GraphOps>(kGraphOps).emplace_back(new DataBalanceOpHandle(
X
polish  
Xin Pan 已提交
605 606
      result->CreateEmptyNode("data_balance", ir::Node::Type::kOperation),
      local_scopes_, places_, nccl_ctxs_));
F
fengjiayi 已提交
607
#else
X
Xin Pan 已提交
608
  result->Get<GraphOps>(kGraphOps).emplace_back(new DataBalanceOpHandle(
X
polish  
Xin Pan 已提交
609 610
      result->CreateEmptyNode("data_balance", ir::Node::Type::kOperation),
      local_scopes_, places_));
F
fengjiayi 已提交
611
#endif
X
clean1  
Xin Pan 已提交
612
  auto *op_handle = result->Get<GraphOps>(kGraphOps).back();
613 614 615 616
  for (size_t i = 0; i < places_.size(); ++i) {
    auto &p = places_[i];
    SetCommunicationContext(op_handle, p);
    for (const std::string &d_name : datas) {
X
Xin Pan 已提交
617
      auto &vars = result->Get<GraphVars>(kGraphVars)[i][d_name];
618
      PADDLE_ENFORCE(!vars.empty());
X
clean1  
Xin Pan 已提交
619
      op_handle->AddInput(vars.back());
X
polish  
Xin Pan 已提交
620 621 622
      auto var = new VarHandle(
          result->CreateEmptyNode(d_name, ir::Node::Type::kVariable),
          vars.size(), i, d_name, p);
623 624 625 626 627 628
      vars.emplace_back(var);
      op_handle->AddOutput(var);
    }
  }
}

X
Xin Pan 已提交
629 630 631
int MultiDevSSAGraphBuilder::GetOpDeviceID(
    const ir::Graph &graph, ir::Node *node,
    const std::unordered_map<std::string, int> &sharded_var_device) const {
Y
yuyang18 已提交
632
  if (strategy_.reduce_ != BuildStrategy::ReduceStrategy::kReduce) {
C
chengduoZH 已提交
633 634
    return -1;
  }
635
  int op_role = boost::get<int>(
636
      node->Op()->GetAttr(framework::OpProtoAndCheckerMaker::OpRoleAttrName()));
637 638
  if (op_role != static_cast<int>(framework::OpRole::kOptimize)) {
    return -1;
C
chengduoZH 已提交
639
  }
640
  auto param_grad = boost::get<std::vector<std::string>>(
X
Xin Pan 已提交
641
      node->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleVarAttrName()));
642 643

  PADDLE_ENFORCE_EQ(param_grad.size(), 2U);
X
Xin Pan 已提交
644
  int dev_id = GetVarDeviceID(graph, param_grad[1], sharded_var_device);
X
Xin Pan 已提交
645 646
  PADDLE_ENFORCE_NE(dev_id, -1, "dev_id should not be -1.[%s, %s, %s]",
                    node->Op()->Type(), param_grad[0], param_grad[1]);
647
  return dev_id;
648 649
}

X
Xin Pan 已提交
650 651 652
int MultiDevSSAGraphBuilder::GetVarDeviceID(
    const ir::Graph &graph, const std::string &varname,
    const std::unordered_map<std::string, int> &sharded_var_device) const {
X
Xin Pan 已提交
653
  auto got = sharded_var_device.find(varname);
C
chengduo 已提交
654 655 656 657 658 659
  if (got == sharded_var_device.end()) {
    auto pos = varname.find(framework::kNewGradSuffix);
    if (pos != std::string::npos) {
      got = sharded_var_device.find(varname.substr(0, pos));
    }
  }
X
Xin Pan 已提交
660
  return got == sharded_var_device.end() ? -1 : got->second;
C
chengduoZH 已提交
661 662
}

663
void MultiDevSSAGraphBuilder::CreateScaleLossGradOp(
664 665
    ir::Graph *result, const std::string &loss_grad_name,
    ir::Node *out_var_node) const {
Y
Yu Yang 已提交
666
  for (size_t i = 0; i < places_.size(); ++i) {
Y
yuyang18 已提交
667 668
    // Insert ScaleCost OpHandle
    auto *dev_ctx = platform::DeviceContextPool::Instance().Get(places_[i]);
X
Xin Pan 已提交
669
    auto *op_handle = new ScaleLossGradOpHandle(
X
polish  
Xin Pan 已提交
670
        result->CreateEmptyNode("scale_loss_grad", ir::Node::Type::kOperation),
Y
yuyang18 已提交
671
        local_scopes_.size(), local_scopes_[i], places_[i], dev_ctx);
X
Xin Pan 已提交
672
    result->Get<GraphOps>(kGraphOps).emplace_back(op_handle);
Y
Yu Yang 已提交
673 674 675 676 677 678 679

    // FIXME: Currently ScaleLossGradOp only use device_count as scale
    // factor. So it does not depend on any other operators.
    // VarHandle *loss = GetVarHandle(loss_var_name, place);
    // loss->pending_ops_.emplace_back(op_handle);
    // op_handle->inputs_.emplace_back(loss);

680 681
    CreateOpOutput(result, op_handle,
                   result->CreateVarNode(out_var_node->Var()), places_[i], i);
Y
Yu Yang 已提交
682 683 684
  }
}

X
Xin Pan 已提交
685
void MultiDevSSAGraphBuilder::CreateComputationalOps(ir::Graph *result,
686
                                                     ir::Node *node,
T
typhoonzero 已提交
687 688
                                                     size_t num_places) const {
  for (size_t scope_idx = 0; scope_idx < num_places; ++scope_idx) {
Y
Yu Yang 已提交
689 690
    auto p = places_[scope_idx];
    auto s = local_scopes_[scope_idx];
X
Xin Pan 已提交
691
    result->Get<GraphOps>(kGraphOps).emplace_back(
X
Xin Pan 已提交
692
        new ComputationOpHandle(result->CreateOpNode(node->Op()), s, p));
693
    CreateOpHandleIOs(result, node, scope_idx);
Y
Yu Yang 已提交
694 695 696
  }
}

X
Xin Pan 已提交
697
VarHandle *MultiDevSSAGraphBuilder::CreateReduceOp(ir::Graph *result,
C
chengduoZH 已提交
698 699
                                                   const std::string &og,
                                                   int dst_dev_id) const {
P
peizhilin 已提交
700
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
X
Xin Pan 已提交
701
  result->Get<GraphOps>(kGraphOps).emplace_back(new ReduceOpHandle(
X
polish  
Xin Pan 已提交
702 703
      result->CreateEmptyNode("reduce", ir::Node::Type::kOperation),
      local_scopes_, places_, nccl_ctxs_));
C
chengduoZH 已提交
704
#else
X
Xin Pan 已提交
705
  result->Get<GraphOps>(kGraphOps).emplace_back(new ReduceOpHandle(
X
polish  
Xin Pan 已提交
706 707
      result->CreateEmptyNode("reduce", ir::Node::Type::kOperation),
      local_scopes_, places_));
C
chengduoZH 已提交
708
#endif
X
clean1  
Xin Pan 已提交
709
  auto *op_handle = result->Get<GraphOps>(kGraphOps).back();
C
chengduoZH 已提交
710 711 712

  for (size_t i = 0; i < places_.size(); ++i) {
    auto &p = places_[i];
C
chengduoZH 已提交
713
    SetCommunicationContext(op_handle, p);
X
Xin Pan 已提交
714
    auto &vars = result->Get<GraphVars>(kGraphVars)[i][og];
C
chengduoZH 已提交
715 716
    PADDLE_ENFORCE(!vars.empty());
    auto &prev_grad = vars.back();
X
clean1  
Xin Pan 已提交
717
    op_handle->AddInput(prev_grad);
C
chengduoZH 已提交
718
  }
X
Xin Pan 已提交
719
  auto &vars = result->Get<GraphVars>(kGraphVars)[dst_dev_id][og];
X
polish  
Xin Pan 已提交
720 721 722
  auto var =
      new VarHandle(result->CreateEmptyNode(og, ir::Node::Type::kVariable),
                    vars.size(), dst_dev_id, og, places_[dst_dev_id]);
C
chengduoZH 已提交
723 724 725 726 727
  vars.emplace_back(var);
  op_handle->AddOutput(var);
  return var;
}

X
Xin Pan 已提交
728 729 730
int MultiDevSSAGraphBuilder::CreateDistTrainOp(
    ir::Graph *result, ir::Node *node,
    std::unordered_map<std::string, int> *sharded_var_device) const {
Y
Yancey1989 已提交
731
  int op_dev_id = -1;
732 733 734
  std::vector<std::string> input_var_names;
  std::vector<std::string> output_var_names;
  for (ir::Node *input : node->inputs) {
X
Xin Pan 已提交
735
    input_var_names.push_back(input->Name());
736 737
  }
  for (ir::Node *output : node->outputs) {
X
Xin Pan 已提交
738
    output_var_names.push_back(output->Name());
739 740 741
  }

  if (node->Op()->Type() == "split_byref" ||
742 743
      node->Op()->Type() == "split_selected_rows" ||
      node->Op()->Type() == "split_ids") {
X
Xin Pan 已提交
744
    // TODO(paddle-dev): getting the first var is not safe.
X
Xin Pan 已提交
745 746
    op_dev_id =
        GetVarDeviceID(*result, input_var_names[0], *sharded_var_device);
Y
Yancey1989 已提交
747
    if (strategy_.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce) {
748 749
      op_dev_id = GetAppropriateDeviceID(input_var_names);
      for (auto &varname : input_var_names) {
X
Xin Pan 已提交
750
        sharded_var_device->emplace(varname, op_dev_id);
Y
Yancey1989 已提交
751 752
      }
    }
753
    for (auto &varname : output_var_names) {
X
Xin Pan 已提交
754
      sharded_var_device->emplace(varname, op_dev_id);
Y
Yancey1989 已提交
755
    }
756
  } else if (node->Op()->Type() == "concat") {
X
Xin Pan 已提交
757 758
    op_dev_id =
        GetVarDeviceID(*result, input_var_names[0], *sharded_var_device);
759
    for (auto &varname : output_var_names) {
X
Xin Pan 已提交
760
      sharded_var_device->emplace(varname, op_dev_id);
Y
yi.wu 已提交
761
    }
Y
Yancey1989 已提交
762
  } else {
763
    LOG(ERROR) << "got unexpected dist op: " << node->Op()->Type();
W
Wu Yi 已提交
764
    PADDLE_THROW(
Y
Yancey1989 已提交
765 766 767 768 769
        "the distribute training related op should be in [split_byref, "
        "concat].");
  }

  PADDLE_ENFORCE(op_dev_id != -1,
770 771
                 "can not find right place for distributed op: %s",
                 node->Op()->Type());
Y
Yancey1989 已提交
772

773
  CreateComputationalOp(result, node, op_dev_id);
Y
Yancey1989 已提交
774
  return op_dev_id;
W
Wu Yi 已提交
775 776 777
}

void SetOpInputsAllPlaces(ir::Graph *result, ir::Node *node, int num_places) {
X
clean1  
Xin Pan 已提交
778
  auto *op_handle = result->Get<GraphOps>(kGraphOps).back();
W
Wu Yi 已提交
779 780 781 782 783 784
  for (ir::Node *input : node->inputs) {
    VarHandle *var = nullptr;
    for (int place_offset = 0; place_offset < num_places; ++place_offset) {
      auto &var_holders = result->Get<GraphVars>(kGraphVars)[place_offset];
      auto &var_holder = var_holders[input->Name()];
      if (!var_holder.empty()) {
X
clean1  
Xin Pan 已提交
785
        var = *var_holder.rbegin();
W
Wu Yi 已提交
786 787 788
        op_handle->AddInput(var);
      }
    }
Y
Yancey1989 已提交
789 790 791
  }
}

792
// Create RPC related op handles that connects its in ops and out ops.
X
Xin Pan 已提交
793 794 795
int MultiDevSSAGraphBuilder::CreateRPCOp(
    ir::Graph *result, ir::Node *node,
    std::unordered_map<std::string, int> *sharded_var_device) const {
Y
Yancey1989 已提交
796
  int op_dev_id = -1;
797
  if (node->Op()->Type() == "send") {
X
Xin Pan 已提交
798
    // TODO(paddle-dev): getting the first var is not safe.
X
Xin Pan 已提交
799 800
    op_dev_id =
        GetVarDeviceID(*result, node->inputs[0]->Name(), *sharded_var_device);
X
Xin Pan 已提交
801 802
    PADDLE_ENFORCE(!ir::IsControlDepVar(*node->inputs[0]),
                   "This hack no longer holds, please fix.");
Y
Yancey1989 已提交
803 804 805
    // the variable name which contains .block means it was splited by
    // split_byref op
    if (strategy_.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce &&
X
Xin Pan 已提交
806
        node->inputs[0]->Name().find(".block") == std::string::npos) {
807 808
      std::vector<std::string> input_var_names;
      for (ir::Node *n : node->inputs) {
X
Xin Pan 已提交
809
        input_var_names.push_back(n->Name());
810
      }
W
Wu Yi 已提交
811 812 813 814
      auto send_param_grad = boost::get<std::vector<std::string>>(
          node->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleVarAttrName()));
      PADDLE_ENFORCE_EQ(send_param_grad.size(), 2U);
      op_dev_id = GetAppropriateDeviceID({send_param_grad[1]});
M
minqiyang 已提交
815 816
      VLOG(10) << "send grad " << input_var_names[0] << " origin "
               << send_param_grad[1] << " place: " << op_dev_id;
817
      for (auto &varname : input_var_names) {
X
Xin Pan 已提交
818
        sharded_var_device->emplace(varname, op_dev_id);
Y
Yancey1989 已提交
819
      }
X
Xin Pan 已提交
820
      sharded_var_device->emplace(send_param_grad[1], op_dev_id);
Y
Yancey1989 已提交
821
    }
822 823 824
  } else if (node->Op()->Type() == "recv") {
    std::vector<std::string> output_var_names;
    for (ir::Node *n : node->outputs) {
X
Xin Pan 已提交
825
      output_var_names.push_back(n->Name());
826
    }
W
Wu Yi 已提交
827 828 829
    auto recv_param_grad = boost::get<std::vector<std::string>>(
        node->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleVarAttrName()));
    if (recv_param_grad.size() == 2U) {
X
Xin Pan 已提交
830 831
      op_dev_id =
          GetVarDeviceID(*result, recv_param_grad[1], *sharded_var_device);
M
minqiyang 已提交
832 833 834
      VLOG(10) << "recv param " << recv_param_grad[0]
               << " get grad place: " << recv_param_grad[1]
               << " place: " << op_dev_id;
W
Wu Yi 已提交
835 836 837
    } else {
      op_dev_id = GetAppropriateDeviceID(output_var_names);
    }
838
    for (auto &varname : output_var_names) {
X
Xin Pan 已提交
839
      sharded_var_device->emplace(varname, op_dev_id);
Y
Yancey1989 已提交
840 841
    }
  } else {
W
Wu Yi 已提交
842
    // send_barrier, fetch_barrier will run on place 0;
Y
Yancey1989 已提交
843 844 845 846
    op_dev_id = 0;
  }

  PADDLE_ENFORCE(op_dev_id != -1, "can not find the right place for rpc op: %s",
847
                 node->Op()->Type());
X
Xin Pan 已提交
848
  result->Get<GraphOps>(kGraphOps).emplace_back(new RPCOpHandle(
849 850
      result->CreateOpNode(node->Op()), *node->Op(), local_scopes_[op_dev_id],
      node->Op()->Type(), places_[op_dev_id]));
Y
fix pe  
Yancey1989 已提交
851

W
Wu Yi 已提交
852 853
  if (node->Op()->Type() == "send") {
    CreateOpHandleIOs(result, node, op_dev_id);
Y
Yancey1989 已提交
854
  } else {
W
Wu Yi 已提交
855 856 857
    // send_barrier, recv, fetch_barrier's inputs are deps var, get them from
    // all places
    auto p = places_[op_dev_id];
X
clean1  
Xin Pan 已提交
858
    auto *op_handle = result->Get<GraphOps>(kGraphOps).back();
W
Wu Yi 已提交
859 860
    op_handle->SetDeviceContext(p,
                                platform::DeviceContextPool::Instance().Get(p));
Y
Yancey1989 已提交
861

W
Wu Yi 已提交
862 863 864 865
    SetOpInputsAllPlaces(result, node, places_.size());
    for (ir::Node *output : node->outputs) {
      int outvar_dev_id = op_dev_id;
      if (node->Op()->Type() == "fetch_barrier") {
X
Xin Pan 已提交
866 867
        outvar_dev_id =
            GetVarDeviceID(*result, output->Name(), *sharded_var_device);
Q
Qiao Longfei 已提交
868
        PADDLE_ENFORCE_NE(outvar_dev_id, -1, "output name %s", output->Name());
W
Wu Yi 已提交
869 870 871 872 873 874 875 876 877 878 879 880
      }
      p = places_[outvar_dev_id];
      ir::Node *new_node = nullptr;
      if (output->Var()) {
        new_node = result->CreateVarNode(output->Var());
      } else {
        new_node =
            result->CreateEmptyNode(output->Name(), ir::Node::Type::kVariable);
      }
      CreateOpOutput(result, op_handle, new_node, p, outvar_dev_id);
    }
  }
Y
Yancey1989 已提交
881
  return op_dev_id;
Y
Yu Yang 已提交
882 883
}

884
bool MultiDevSSAGraphBuilder::IsScaleLossOp(ir::Node *node) const {
Y
yuyang18 已提交
885
  return boost::get<int>(
886
             node->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleAttrName())) ==
Y
Fix bug  
yuyang18 已提交
887 888 889
             (static_cast<int>(OpRole::kBackward) |
              static_cast<int>(OpRole::kLoss)) &&
         !loss_var_name_.empty();  // If loss_var is empty. This is test mode
Y
Yu Yang 已提交
890
}
Y
Yu Yang 已提交
891 892 893
}  // namespace details
}  // namespace framework
}  // namespace paddle
X
Xin Pan 已提交
894

X
Xin Pan 已提交
895
REGISTER_PASS(multi_devices_pass,
X
Xin Pan 已提交
896 897 898 899 900
              paddle::framework::details::MultiDevSSAGraphBuilder)
    .RequirePassAttr(paddle::framework::details::kLossVarName)
    .RequirePassAttr(paddle::framework::details::kPlaces)
    .RequirePassAttr(paddle::framework::details::kParams)
    .RequirePassAttr(paddle::framework::details::kLocalScopes)
901 902
    .RequirePassAttr(paddle::framework::details::kStrategy)
    .RequirePassAttr(paddle::framework::details::kNumTrainers);