grpc_serde.cc 7.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#ifdef PADDLE_WITH_NCCL
16 17
#include <nccl.h>
#endif
G
gongweibao 已提交
18
#include <limits>
G
gongweibao 已提交
19
#include <memory>
20 21 22 23 24
#include <thread>  // NOLINT

#include "google/protobuf/io/coded_stream.h"
#include "google/protobuf/io/zero_copy_stream.h"
#include "paddle/fluid/framework/data_type.h"
W
Wu Yi 已提交
25 26 27
#include "paddle/fluid/operators/distributed/grpc/grpc_bytebuffer_stream.h"
#include "paddle/fluid/operators/distributed/grpc/grpc_serde.h"
#include "paddle/fluid/operators/distributed/grpc/grpc_variable_response.h"
28 29
#include "paddle/fluid/operators/distributed/proto_encoder_helper.h"
#include "paddle/fluid/operators/distributed/sendrecvop_utils.h"
P
peizhilin 已提交
30
#include "paddle/fluid/platform/port.h"
31 32 33 34 35 36 37 38
#include "paddle/fluid/platform/profiler.h"

namespace paddle {
namespace operators {
namespace distributed {

void SerializeToByteBuffer(const std::string& name, framework::Variable* var,
                           const platform::DeviceContext& ctx,
W
Wu Yi 已提交
39
                           ::grpc::ByteBuffer* msg, const std::string& out_name,
Q
Qiao Longfei 已提交
40 41
                           const int trainer_id,
                           const std::string& table_name) {
42
  platform::RecordRPCEvent record_event("serial");
C
chengmo 已提交
43 44
  platform::RecordEvent record_event_grpc("grpc::SerializeToByteBuffer",
                                          platform::EventRole::kInnerOp);
45
  VarMsg request;
Y
Yu Yang 已提交
46
  TensorPayload* payload = nullptr;
47 48

  request.set_varname(name);
W
Wu Yi 已提交
49
  request.set_trainer_id(trainer_id);
50 51 52 53 54 55 56 57 58 59 60 61 62 63
  // Note: normally the profiler is enabled in 1 trainer, hence only
  // 1 trainer returns true for ShouldSendProfileState(). It tells PS
  // servers the trainer's profiling state so that PS can follow the
  // trainer.
  if (platform::ShouldSendProfileState()) {
    if (platform::IsProfileEnabled()) {
      request.set_profile(platform::kEnableProfiler);
    } else {
      request.set_profile(platform::kDisableProfiler);
    }
  }
  if (!out_name.empty()) {
    request.set_out_varname(out_name);
  }
Q
Qiao Longfei 已提交
64 65 66
  if (!table_name.empty()) {
    request.set_table_name(table_name);
  }
67 68
  if (var->IsType<framework::LoDTensor>()) {
    request.set_type(::sendrecv::LOD_TENSOR);
Y
Yu Yang 已提交
69
    payload = new TensorPayload(GetTensorPayload(var, ctx, &request));
70 71
  } else if (var->IsType<framework::SelectedRows>()) {
    request.set_type(::sendrecv::SELECTED_ROWS);
Y
Yu Yang 已提交
72
    payload = new TensorPayload(GetSelectedRowsPayload(var, ctx, &request));
73
#ifdef PADDLE_WITH_NCCL
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
  } else if (var->IsType<ncclUniqueId>()) {
    request.set_type(::sendrecv::NCCL_ID);
#endif
  } else {
    PADDLE_THROW("Serialize does not support type: %s",
                 typeid(var->Type()).name());
  }
  std::string header;
  request.AppendToString(&header);
  auto buffer = std::unique_ptr<char[]>(new char[1024]);
  void* buf = buffer.get();
  ProtoEncodeHelper e(static_cast<char*>(buf), 1024);
  e.WriteRawBytes(std::string(header.data(), header.size()));
// NCCLID is copied directly to the message, return bytebuffer
// with only one slice if serializing NCCLID.
89
#ifdef PADDLE_WITH_NCCL
90 91 92 93 94 95 96 97 98 99 100 101 102 103
  if (var->IsType<ncclUniqueId>()) {
    e.WriteVarlengthBeginning(VarMsg::kSerializedFieldNumber,
                              NCCL_UNIQUE_ID_BYTES);
    const ncclUniqueId& uid = var->Get<ncclUniqueId>();
    e.WriteRawBytes(std::string(uid.internal, NCCL_UNIQUE_ID_BYTES));

    // for serialize NCCL_ID
    ::grpc::Slice slices(e.size());
    memcpy(const_cast<uint8_t*>(slices.begin()), e.data(), e.size());
    ::grpc::ByteBuffer tmp(&slices, 1);
    msg->Swap(&tmp);
    return;
  }
#endif
Y
Yu Yang 已提交
104 105
  PADDLE_ENFORCE_NOT_NULL(payload);
  e.WriteVarlengthBeginning(VarMsg::kSerializedFieldNumber,
Y
Yu Yang 已提交
106
                            payload->memory_size());
G
gongweibao 已提交
107
  if (payload->memory_size() >= std::numeric_limits<int>::max()) {
108 109 110
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Variable %s length %d should less than %d.", name,
        payload->memory_size(), std::numeric_limits<int>::max()));
G
gongweibao 已提交
111
  }
112 113 114 115 116
  // steal reference of tensor data
  ::grpc::Slice slices[4];  // metadata, tensor, rows meta, rows
  int num_slices = 2;       // only SelectedRows have rows buffer
  slices[0] = ::grpc::Slice(e.size());
  memcpy(const_cast<uint8_t*>(slices[0].begin()), e.data(), e.size());
Y
Yu Yang 已提交
117 118 119 120
  slices[1] = ::grpc::Slice(
      grpc_slice_new_with_user_data(payload->ptr(), payload->memory_size(),
                                    SerializeDestroyCallback, payload),
      ::grpc::Slice::STEAL_REF);
121 122 123 124

  if (var->IsType<framework::SelectedRows>()) {
    auto* slr = var->GetMutable<framework::SelectedRows>();
    ProtoEncodeHelper e2(static_cast<char*>(buf), 128);
G
gongweibao 已提交
125 126

    PADDLE_ENFORCE(VectorElemName(slr->rows()) == typeid(int64_t).name());
Y
Yu Yang 已提交
127
    size_t rows_memory_size = slr->rows().size() * sizeof(int64_t);
G
gongweibao 已提交
128

129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
    e2.WriteVarlengthBeginning(VarMsg::kRowsFieldNumber, rows_memory_size);
    slices[2] = ::grpc::Slice(e2.size());
    memcpy(const_cast<uint8_t*>(slices[2].begin()), e2.data(), e2.size());

    slices[3] = ::grpc::Slice(
        grpc_slice_new_with_user_data(
            const_cast<void*>(
                reinterpret_cast<const void*>(slr->rows().data())),
            rows_memory_size, [](void* backing) {},
            const_cast<char*>(
                reinterpret_cast<const char*>(slr->rows().data()))),
        ::grpc::Slice::STEAL_REF);
    num_slices = 4;
  }
  ::grpc::ByteBuffer tmp(&slices[0], num_slices);
  msg->Swap(&tmp);
}

void DeserializeFromByteBuffer(const ::grpc::ByteBuffer& msg,
                               const platform::DeviceContext& ctx,
                               const framework::Scope* scope,
W
Wu Yi 已提交
150
                               framework::Variable** var, int* trainer_id) {
151
  platform::RecordRPCEvent record_event("deserial");
C
chengmo 已提交
152 153
  platform::RecordEvent record_event_grpc("grpc::DeserializeFromByteBuffer",
                                          platform::EventRole::kInnerOp);
154 155 156
  operators::distributed::GRPCVariableResponse resp(scope, &ctx);
  PADDLE_ENFORCE(resp.Parse(msg) == 0, "parse bytebuffer to tensor error!");
  *var = resp.GetVar();
W
Wu Yi 已提交
157
  *trainer_id = resp.GetTrainerId();
158 159
}

160 161 162 163 164 165 166 167 168 169 170 171 172
void DeserializeRecvFromByteBuffer(const ::grpc::ByteBuffer& msg,
                                   const platform::DeviceContext& ctx,
                                   const framework::Scope* scope,
                                   framework::Variable** var, int* trainer_id) {
  platform::RecordRPCEvent record_event("deserial");
  operators::distributed::GRPCVariableResponse resp(scope, &ctx);
  PADDLE_ENFORCE_EQ(
      resp.Parse(msg), 0,
      platform::errors::InvalidArgument("parse bytebuffer to tensor error!"));
  *var = resp.GetRecvVar();
  *trainer_id = resp.GetTrainerId();
}

173 174 175
}  // namespace distributed
}  // namespace operators
}  // namespace paddle